Page 189 - Schaum's Outline of Theory and Problems of Electric Circuits
P. 189

HIGHER-ORDER CIRCUITS AND COMPLEX FREQUENCY
               178











                                                        Fig. 8-19                               [CHAP. 8

                     Knowing the end conditions on v C , we can write
                                                þ
                                        v C ¼½v C ð0 Þ  v C ð1ފe  t=   þ v C ð1Þ ¼ 25ð1   e  t=10 Þ  ðVÞ
                     wherein t is measured in ms.
                         The current in the capacitor is given by
                                                          dv C    t=10
                                                    i C ¼ C  ¼ 5e     ðAÞ
                                                           dt
                     and the current in the parallel 10-
 resistor is
                                                       v C          t=10
                                                 i 10
 ¼  ¼ 2:5ð1   e  Þ  ðAÞ
                                                       10
                     Hence,                      i ¼ i C þ i 10
 ¼ 2:5ð1 þ e  t=10 Þ  ðAÞ
                         The problem might also have been solved by assigning mesh currents and solving simultaneous differ-
                     ential equations.


               8.6   For the time functions listed in the first column of Table 8-2, write the corresponding amplitude
                     and phase angle (cosine-based) and the complex frequency s.

                         See columns 2 and 3 of the table.
                                                       Table 8-2
                              Time Function                     A  8             s

                              iðtÞ¼ 86:6A                    86:6 08 A           0
                                           3                                      3
                                        2 10 t
                              iðtÞ¼ 15:0e     ðAÞ            15:0 08 A       2   10 Np/s
                              vðtÞ¼ 25:0 cos ð250t   458Þ  ðVÞ  25:0  458 V    j250 rad/s
                              vðtÞ¼ 0:50 sin ð250t þ 308Þ  ðVÞ  0:50  608 V    j250 rad/s
                              iðtÞ¼ 5:0e  100t  sin ð50t þ 908Þ  ðAÞ  5:0 08 A   100   j50 s  1
                              iðtÞ¼ 3 cos 50t þ 4 sin 50t  ðAÞ  5  53:138 A    j50 rad/s


               8.7   For each amplitude and phase angle in the first column and complex frequency s in the second
                     column in Table 8-3, write the corresponding time function.
                         See column 3 of the table.
                                                        Table 8-3
                                       A  8            s          Time Function
                                       10 08     þj120           10 cos 120 t
                                       2 458      j120           2 cos ð120 t þ 458Þ
                                       5  908     2   j50        5e  2t  cos ð50t   908Þ
                                       15 08      5000   j1000   15e  5000t  cos 1000t
                                       100 308         0              86.6
   184   185   186   187   188   189   190   191   192   193   194