Page 187 - Schaum's Outline of Theory and Problems of Electric Circuits
P. 187

HIGHER-ORDER CIRCUITS AND COMPLEX FREQUENCY
                                                                                                [CHAP. 8
               176
               For sustained oscillations the roots of the characteristic equation in Example 8.14 should be imaginary numbers.
               This happens when k ¼ 3or R 2 ¼ 2R 1 , in which case ! ¼ 1=RC.





                                                 Solved Problems



               8.1   A series RLC circuit, with R ¼ 3k
, L ¼ 10 H, and C ¼ 200 mF, has a constant-voltage source,
                     V ¼ 50 V, applied at t ¼ 0.  (a) Obtain the current transient, if the capacitor has no initial
                     charge.  (b) Sketch the current and find the time at which it is a maximum.
                                                                           q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
                                     R                   1
                                                     2
                                                                              2
                                                                                  2
                     ðaÞ           ¼   ¼ 150 s  1   ! 0 ¼  ¼ 500 s  2     ¼      ! ¼ 148:3s  1
                                                                                  0
                                     2L                 LC
                         The circuit is overdamped ð > ! 0 Þ.
                                          s 1 ¼   þ   ¼ 1:70 s  1  s 2 ¼       ¼ 298:3s  1
                         and                           i ¼ A 1 e  1:70t  þ A 2 e  298:3t
                                                          þ

                                                                             þ
                                                                                                      þ

                         Since the circuit contains an inductance, ið0 Þ¼ ið0 Þ¼ 0; also, Qð0 Þ¼ Qð0 Þ¼ 0.  Thus, at t ¼ 0 ,
                         KVL gives

                                                     di               di    V
                                             0 þ 0 þ L     ¼ V  or        ¼   ¼ 5A=s
                                                     dt 0    þ        dt 0    þ  L
                         Applying these initial conditions to the expression for i,
                                                     0 ¼ A 1 ð1Þþ A 2 ð1Þ
                                                     5 ¼ 1:70A 1 ð1Þ  298:3A 2 ð1Þ
                         from which A 1 ¼ A 2 ¼ 16:9 mA.
                                                    i ¼ 16:9ðe  1:70t    e  298:3t Þ  ðmAÞ

                     (b) For the time of maximum current,
                                                  di            1:70t       298:3t
                                                    ¼ 0 ¼ 28:73e   þ 5041:3e
                                                  dt
                         Solving by logarithms, t ¼ 17:4 ms.  See Fig. 8-18.
























                                                        Fig. 8-18
   182   183   184   185   186   187   188   189   190   191   192