Page 188 - Schaum's Outline of Theory and Problems of Electric Circuits
P. 188

177
                                 HIGHER-ORDER CIRCUITS AND COMPLEX FREQUENCY
               CHAP. 8]
               8.2   A series RLC circuit, with R ¼ 50 
; L ¼ 0:1H; and C ¼ 50 mF, has a constant voltage V ¼ 100 V
                     applied at t ¼ 0.  Obtain the current transient, assuming zero initial charge on the capacitor.
                                                                            q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
                                  R                   1
                                                                5  2
                                                  2
                                                                               2
                                                                                   2
                                ¼   ¼ 250 s  1   ! 0 ¼  ¼ 2:0   10 s       ¼      ! ¼ j370:8 rad=s
                                                                                   0
                                 2L                  LC
                     This is an oscillatory case ð < ! 0 Þ, and the general current expression is
                                                i ¼ e  250t ðA 1 cos 370:8 t þ A 2 sin 370:8tÞ
                     The initial conditions, obtained as in Problem 8.1, are

                                                              di
                                                     þ
                                                   ið0 Þ¼ 0         ¼ 1000 A=s
                                                              dt
                                                                0 þ
                     and these determine the values: A 1 ¼ 0, A 2 ¼ 2:70 A.  Then
                                                        250t
                                                   i ¼ e  ð2:70 sin 370:8tÞ  ðAÞ
               8.3   Rework Problem 8.2, if the capacitor has an initial charge Q 0 ¼ 2500 mC.
                         Everything remains the same as in Problem 8.2 except the second initial condition, which is now

                                          di      Q 0         di      100  ð2500=50Þ
                                     0 þ L    þ   ¼ V    or       ¼              ¼ 500 A=s
                                          dt    C             dt         0:1
                                            0 þ                  0 þ
                     The initial values are half those in Problem 8.2, and so, by linearity,
                                                   i ¼ e  250t ð1:35 sin 370:8tÞ  ðAÞ



               8.4   A parallel RLC network, with R ¼ 50:0 
, C ¼ 200 mF, and L ¼ 55:6 mH, has an initial charge
                     Q 0 ¼ 5:0 mC on the capacitor.  Obtain the expression for the voltage across the network.

                                                 1       1     2  1           4  2
                                              ¼    ¼ 50 s    ! 0 ¼   ¼ 8:99   10 s
                                               2RC                LC
                                                                      q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
                               2
                           2
                                                                            2
                                                                        2
                     Since ! 0 >  , the voltage function is oscillatory and so ! d ¼  !     ¼ 296 rad/s.  The general voltage
                                                                        0
                     expression is
                                                 v ¼ e  50t ðA 1 cos 296t þ A 2 sin 296tÞ
                     With Q 0 ¼ 5:0   10  3  C, V 0 ¼ 25:0V.  At t ¼ 0, v ¼ 25:0 V.  Then, A 1 ¼ 25:0.
                                dv        50t                         50t
                                   ¼ 50e   ðA 1 cos 296t þ A 2 sin 296tÞþ 296e  ð A 1 sin 296t þ A 2 cos 296tÞ
                                 dt
                     At t ¼ 0, dv=dt ¼ V 0 =RC ¼ ! d A 2    A 1 , from which A 2 ¼ 4:22.  Thus,
                                              v ¼ e  50t ð25:0 cos 296t   4:22 sin 296tÞðVÞ


               8.5   In Fig. 8-19, the switch is closed at t ¼ 0.  Obtain the current i and capacitor voltage v , for
                                                                                                   C
                     t > 0.
                         As far as the natural response of the circuit is concerned, the two resistors are in parallel; hence,
                                                     ¼ R eq C ¼ð5 
Þð2 mFÞ¼ 10 ms
                                    þ

                     By continuity, v C ð0 Þ¼ v C ð0 Þ¼ 0. Furthermore, as t !1, the capacitor becomes an open circuit, leav-
                     ing 20 
 in series with the 50 V. That is,
                                               50
                                         ið1Þ ¼   ¼ 2:5A     v C ð1Þ ¼ ð2:5AÞð10 
Þ¼ 25 V
                                               20
   183   184   185   186   187   188   189   190   191   192   193