Page 52 - Science at the nanoscale
P. 52

9:2
                                                     RPS: PSP0007 - Science-at-Nanoscale
                   June 9, 2009
                              Brief Review of Quantum Mechanics
                          42
                                               L
                                                z
                                                   Z
                                                        y
                                                            x
                                                                               L
                                                                                y
                                                               L
                                                                x
                                              Figure 3.4.
                                                        Three-dimensional potential box.
                                   the box, ψ(x, y, z) = 0, inside the box

                                                                                        (3.28)
                                              ψ(x, y, z) = D sin (k x x) sin k y y sin (k z z)
                                   where D is the normalisation constant and
                                                                n x π
                                                            k x =
                                                                 L x
                                                                n y π
                                                                                        (3.29)
                                                            k y =
                                                                 L y
                                                                n z π
                                                            k z =
                                                                 L z
                                     Hence the particle is now described by a set of integer quantum
                                   numbers (n x , n y , n z ). The energy of the particle with mass m is  ch03
                                   given by
                                                                    "  2    2    2  #
                                                                  2
                                               2
                                              h   h  2  2   2  i  h  n x   n y  n z
                                        E =     2  k + k + k z  =      2  +  2  +  2    (3.30)
                                                        y
                                                    x
                                            8mπ                  8m   L x  L y  L z
                                     A few interesting cases follow from the above relations.
                                   Case 1: L x = L y = L z = L. Here the energy of the particle simpli-
                                   fies to
                                                                     2
                                                                 2
                                                             2
                                                           (n + n + n )h 2
                                                             x
                                                                 y
                                                                     z
                                                      E =                               (3.31)
                                                               8mL 2
   47   48   49   50   51   52   53   54   55   56   57