Page 215 - Semiconductor Manufacturing Handbook
P. 215
Geng(SMH)_CH14.qxd 04/04/2005 19:52 Page 14.16
CHEMICAL VAPOR DEPOSITION
14.16 WAFER PROCESSING
4. Kleijn, C. R., “Chemical Vapor Deposition Processes,” in M. Meyyappan (ed.), Computational Modeling in
Semiconductor Processing. Artech House, Boston, MA, 1995, pp. 97–229.
5. Arora, R., and R. Pollard, “A Mathematical Model for Chemical Vapor Deposition Processes Influenced by
Surface Reaction Kinetics: Application to Low Pressure Deposition of Tungsten,” J. Electrochem. Soc., Vol. 138,
pp. 1523–1537, 1991.
6. Wang, Y. F., and R. Pollard, “An Approach for Modeling Surface Reaction Kinetics in Chemical Vapor
Deposition Processes,” J. Electrochem. Soc., Vol. 142, pp. 1712–1725, 1995.
7. Middleman, S., and A. K. Hochberg, Process Engineering Analysis in Semiconductor Device Fabrication,
McGraw-Hill, New York, 1993.
8. Schmitz, J. E. J., Chemical Vapor Deposition of Tungsten and Tungsten Silicides, Noyce Publications, Park
Ridge, NJ, 1992.
9. McInerney, E. J., E. Srinivasan, D. C. Smith, and G. Ramanath, “Kinetic Rate Expression for Tungsten
Chemical Vapor Deposition in Different WF6 Flow Regimes from Step Coverage Measurements,” Zeitschrift
fur Metallkunde, Vol. 91, pp. 573–580, 2000.
10. Han, P., and T. Yoshida, “Growth and Transport of Clusters in Thermal Plasma Vapor Deposition of
Silicon,” J. Appl. Phys., Vol. 92, pp. 4772–4778, 2002.
11. Kremer, D. M., R. W. Davis, E. F. Moore, J. E. Maslar, D. R. Burgess, and S. H. Ehrman, “An Investigation
of Particle Dynamics in a Rotating Disk Chemical Vapor Deposition Reactor,” J. Electrochem. Soc., Vol. 150,
pp. G127–G139, 2003.
12. Hwang, H. H., E. R. Keiter, and M. J. Kushner, “Consequences of 3-Dimensional Physical and
Electromagnetic Structures on Dust Particle Trapping in High Plasma Density Material Processing
Discharges,” J. Vac. Sci. Technol. A, Vol. 16, p. 2454, 1998.
13. Hasper, A., J. E. J. Schmitz, J. Holleman, and J. F. Verwey, “Heat Transport in Cold Wall Single Wafer Low
Pressure Chemical Vapor Deposition Reactors,” J. Vac. Sci. Technol. A, Vol. 10, pp. 3193–3202, 1992.
14. Roth, A., Vacuum Technology, North-Holland, Amsterdam, 1989.
15. O’Hanlon, J., A Users Guide to Vacuum Technology, 3rd ed., John Wiley & Sons, New York, 2003.
16. Lafferty, J. M. (ed.), Foundations of Vacuum Science and Technology, John Wiley & Sons, New York, 1998.
17. Dorner, D., The Logic of Failure. Perseus Books, Cambridge, MA, 1996.
18. McInerney, E. J., T. W. Mountsier, E. K. Broadbent, and B. L. Chin, “Silane Reduced Chemical Vapor
Deposition Tungsten as a Nucleating Step in Blanket W,” J. Vac. Sci. Technol. B, Vol. 11, pp. 734–743, 1993.
19. O’Hanion, J. F., and J. J. Shieh, “Reduction of Water Aerosol Contamination During Pumping of a Vacuum
Chamber from Atmospheric Pressure,” J. Vac. Sci. Technol. A, Vol. 9, pp. 2802–2807, 1991.
20. Box, G. E. P., W. G. Hunter, and J. S. Hunter, Statistics for Experimenters, John Wiley & Sons, New York,
1978.
21. Ritala, M., and M. Leskela, “Deposition and Processing,” in H. S. Nalwa (ed.), Handbook of Thin Film
Materials, Vol. 1, Academic Press, San Diego, CA, 2002, pp. 103–159.
22. Hausmann, D., J. Becker, S. Wang, and R. G. Gordon, “Rapid Vapor Deposition of Highly Conformal Silica
Nanolaminates,” Science, Vol. 298, pp. 402–406, 2002.
23. Josell, D., S. Kim, D. Wheeler, T. P. Moffat, and S. G. Pyo, “Interconnect Fabrication by Superconformal
Iodine-Catalyzed Chemical Vapor Deposition,” J. Electrochem. Soc., Vol. 150, pp. C368–C373, 2003.
24. Blackburn, J. M., D. L. Long, A. Cabanas, and J. J. Watkins, “Deposition of Conformal Copper and Nickel
Films from Supercritical Carbon Dioxide,” Science, Vol. 294, pp. 141–145, 2001.
Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com)
Copyright © 2004 The McGraw-Hill Companies. All rights reserved.
Any use is subject to the Terms of Use as given at the website.

