Page 56 - Sensing, Intelligence, Motion : How Robots and Humans Move in an Unstructured World
P. 56

KINEMATICS  31

            Velocity:


                                                                     ˙
                     ˙ x   −l 1 sin θ 1 − l 2 sin(θ 1 + θ 2 ) − l 2 sin(θ 1 + θ 2 )  θ 1
                ˙
                X =     =                                                  (2.3)
                     ˙ y    l 1 cos θ 1 + l 2 cos(θ 1 + θ 2 )  l 2 cos(θ 1 + θ 2 )  θ 2
                                                                     ˙
                             ˙
                                   ˙
            or, in vector form, X = Jθ,where the 2 × 2matrix J is called the system’s
            Jacobian (see, e.g., Refs. 6 and 7).
              Acceleration:

                                                             ¨
                         ¨ x   −l 1 sin θ 1 − l 2 sin(θ 1 + θ 2 )  θ 1
                            =
                         ¨ y    l 1 cos θ 1  l 2 cos(θ 1 + θ 2 )  θ 1 + θ 2
                                                               ¨
                                                           ¨
                                                             2
                                l 1 cos θ 1 l 2 cos(θ 1 + θ 2 )  θ 1

                                                            ˙
                             −                                             (2.4)
                                l 1 sin θ 1 l 2 sin(θ 1 + θ 2 )  (θ 1 + θ 2 )
                                                              ˙ 2
                                                         ˙
            Inverse Transformation (Inverse Kinematics). From Figure 2.2, obtain the
            position and velocity of the arm joints as a function of the arm endpoint Cartesian
            coordinates:
            Position:
                                          2
                                      2
                                              2
                                     x + y − l − l 2 2
                                              1
                            cos θ 2 =
                                          2l 1 l 2
                                         y      −1   l 2 sin θ 2
                                       −1
                                θ 1 = tan  − tan                           (2.5)
                                         x        l 1 + l 2 cos θ 2
            Velocity:

               ˙                   l 2 cos(θ 1 + θ 2 )     l 2 sin(θ 1 + θ 2 )
              θ 1      1
                  =
               ˙    l 1 l 2 sin θ 2 −l 1 cos θ 1 − l 2 cos(θ 1 + θ 2 )  −l 1 sin θ 1 − l 2 sin(θ 1 + θ 2 )
              θ 2

                        ˙ x
                    ×                                                      (2.6)
                        ˙ y
              Obtaining equations for acceleration takes a bit more effort; for these and
            for other details on equations above, one is referred, for example, to Ref. 8.
            In general, for each point (x, y) in the arm workspace there are two (θ 1 ,θ 2 )
            solutions: One can be called “elbow up,” while the other can be called “elbow
            down” (Figure 2.3a). This is not always so—one should remember special cases
            and degeneracies:


              • Any point on the workspace boundaries—that is, when θ 2 = 0or θ 2 =
                π —has only one solution (Figure 2.3b).
   51   52   53   54   55   56   57   58   59   60   61