Page 548 - Sensors and Control Systems in Manufacturing
P. 548

SpectRx NIR Technology
                          so that the average power dissipated (emitted) by the resistor is  501
                                                       〈 V 〉
                                                         2
                                                P    =                        (10.15)
                                                 emitted  4 R
                             The time average is
                                                   1  T       *
                                            2
                                                           ()
                                          〈V  〉 = lim  ∫ dt V t V t ()        (10.16)
                                               T →∞T  −T
                             In Eq. (10.16) and the expressions that follow, the voltage function
                          V(t) is considered at frequency ω, Eq. (10.9).
                             Then, the  power spectrum—the distribution of power, or square
                          voltage, over many frequencies—is defined as follows:
                                                   ∞
                                              ω
                                                         τ
                                                            ω
                                            S() = ∫ d τ  R( )e − iT  ,        (10.17)
                                                  −∞
                          where
                                                 1
                                                    T
                                                               −
                                           τ
                                             =
                                                             *
                                                         (
                                                           )
                                                             (
                                         R( ) lim ∫ d  tV t V t τ )           (10.18)
                                              T→∞ T  − T
                          is the autocorrelation function of the function V(t) over the period [–T, T].
                          Then, integrating S(w) over all frequencies,
                                ∞
                               ∫ −∞ dω S( ω) lim ∫ −∞ dω ∫ −∞ dτ ∫ − T T dtV t V t −  τ)e −iT
                                                ∞
                                                      ∞
                                             1
                                                                          ω
                                         =
                                                                   *
                                                                        )
                                                                 )
                                                                    (
                                                                (
                                             T
                                          T →∞
                                                               ( −
                                         =  lim  2 π  ∫  ∞  d ∫  T  dtV ( ) t V t τ δ τ
                                                    τ
                                                               *
                                                                   ) ( )
                                          T →∞ T  −∞  −T
                                             2π  T
                                         =  lim  ∫ d tV ( ) t V t
                                                          *
                                                          ( )
                                          T→∞  T  − T
                                              2
                                         = 2π 〈 V 〉                           (10.19)
                             Equating the power dissipated by the resistor, Eq. (10.15) and that
                          absorbed due to thermal radiation Eq. (10.13), it leads to
                                                             ω
                                           〈V 2 〉  1  ∞   h||
                                                =   ∫ d ω   ω                 (10.20)
                                            4 R  2π  −∞    h||
                                                          e kB T  −1
                             By the relationship in Eq. (10.19),
                                                                  ω
                                       1 1   ∞         1   ∞    h ||
                                            ∫  d ω  S ω =()  ∫  d ω  ω        (10.21)
                                      4R  2π  −∞       2π  −∞   h ||
                                                               e kB − 1
                                                                 T
                          so that
                                                         ω
                                                ω
                                              S() = 4 R  h ||                 (10.22)
                                                        ω
                                                       h ||
                                                         T
                                                      e kB −1
   543   544   545   546   547   548   549   550   551   552   553