Page 185 - Shigley's Mechanical Engineering Design
P. 185

bud29281_ch04_147-211.qxd  11/27/2009  7:54 pm  Page 160 pinnacle s-171:Desktop Folder:Temp Work:Don't Delete (Jobs):MHDQ196/Budynas:







                 160    Mechanical Engineering Design
                  Figure 4–7                    y             600 lbf
                                                                       1.750
                                                       1.500
                                             1.000                                        1.000
                  Dimensions in inches.           B            C  D                    E
                                                A                                       F
                                                                                               x
                                                    0.5
                                                      8
                                                        8.5                              R 2
                                               R 1
                                                                     19.5
                                          (a)                               20
                                                          2880 lbf-in  2760 lbf-in
                                               M
                                          (b)
                                              M/I              a
                                                                  b
                                                                  c
                                                                                        d
                                          (c)


                                          A plot of M/I is shown in Fig. 4–7c. The values at points b and c, and the step change are

                                               M       2760                3      M      2760               3

                                                    =       = 11 106.6 lbf/in         =        = 5 994.8 lbf/in
                                               I      0.2485                      I      0.4604
                                                  b                                  c
                                                M                                    3

                                                    = 5 994.8 − 11 106.6 =−5 111.8 lbf/in
                                                I
                                          The slopes for ab and cd, and the change are
                                                   2760 − 2880              4         −5 994.8              4
                                             m ab =           =−965.8 lbf/in    m cd =        =−521.3 lbf/in
                                                    0.2485(0.5)                         11.5
                                              m =−521.3 − (−965.8) = 444.5 lbf/in 4
                                                                                                      3
                                          Dividing Eq. (1) by I BC and, at x   8.5 in, adding a step of −5 111.8 lbf/in and a ramp
                                                           4
                                          of slope 444.5 lbf/in , gives
                                               M                         1                0              1
                                                  = 1 448.7x − 2 414.5 x − 8  − 5 111.8 x − 8.5  + 444.5 x − 8.5   (2)
                                                I
                                          Integration gives
                                                        dy          2              2               1
                                                      E    = 724.35x − 1207.3 x − 8  − 5 111.8 x − 8.5
                                                        dx
                                                                           2
                                                             + 222.3 x − 8.5  + C 1                           (3)

                                          Integrating again yields
                                                      3            3                2               3
                                           Ey = 241.5x − 402.4 x − 8  − 2 555.9 x − 8.5  + 74.08 x − 8.5  + C 1 x + C 2
                                                                                                              (4)

                                          At x = 0, y = 0. This gives C 2 = 0 (remember, singularity functions do not exist until
                                          the argument is positive). At x = 20 in, y = 0, and

                                                                                                      3
                                                                    3
                                                      3
                                                                                      2
                                          0 = 241.5(20) − 402.4(20 − 8) − 2 555.9(20 − 8.5) + 74.08(20 − 8.5) + C 1 (20)
   180   181   182   183   184   185   186   187   188   189   190