Page 275 - Shigley's Mechanical Engineering Design
P. 275

bud29281_ch05_212-264.qxd  11/27/2009  6:46 pm  Page 250 pinnacle s-171:Desktop Folder:Temp Work:Don't Delete (Jobs):MHDQ196/Budynas:







                 250    Mechanical Engineering Design
                                          Equation (5–40) is called the normal coupling equation. The reliability associated with
                                          z is given by
                                                                 1        u
                                                             ∞
                                                                       	   2
                                                       R =     √    exp −     du = 1 − F = 1 − 
(z)        (5–41)
                                                            x    2π        2
                                          The body of Table A–10 gives R when z > 0 and (1 − R = F) when z ≤ 0. Noting that
                                          ¯ n = μ S /μ σ , square both sides of Eq. (5–40), and introduce  C S and  C σ where
                                          C S =ˆσ S /μ S and C σ =ˆσ σ /μ σ . Solve the resulting quadratic for ¯n to obtain

                                                                               2
                                                                                        2
                                                                 1 ±  1 − 1 − z C 2 S  1 − z C σ 2
                                                             ¯ n =               2                         (5–42)
                                                                               2
                                                                           1 − z C
                                                                                 S
                                          The plus sign is associated with R > 0.5, and the minus sign with R < 0.5.
                                          Lognormal–Lognormal Case
                                          Consider the lognormal distributions S = LN(μ S , ˆσ S ) and   = LN(μ σ , ˆσ σ ).Ifwe
                                          interfere their companion normals using Eqs. (20–18) and (20–19), we obtain


                                                            μ ln S = ln μ S − ln 1 + C 2
                                                                                 S
                                                                                       (strength)

                                                                            2
                                                             ˆ σ ln S =  ln 1 + C
                                                                            S
                                          and

                                                             μ ln σ = ln μ σ − ln 1 + C 2
                                                                                  σ
                                                                                        (stress)


                                                              ˆ σ ln σ =  ln 1 + C 2 σ
                                          Using Eq. (5–40) for interfering normal distributions gives

                                                                                             2
                                                                                    μ S  1 + C σ
                                                                                ln           2
                                                                                    μ σ  1 + C
                                                              μ ln S − μ ln σ                S             (5–43)
                                                       z =−
                                                             ˆ σ 2  +ˆσ 2    1/2  =−  ln 1 + C 2    1 + C 2

                                                              ln S  ln σ                S      σ
                                          The reliability R is expressed by Eq. (5–41). The design factor n is the random variable
                                          that is the quotient of S/ . The quotient of lognormals is lognormal, so pursuing the
                                          z variable of the lognormal n, we note

                                                                              2
                                                                            C + C 2
                                                               μ S            S   σ
                                                          μ n =      C n =        2     ˆ σ n = C n μ n
                                                               μ σ           1 + C
                                                                                  σ
                                          The companion normal to n = LN(μ n , ˆσ n ), from Eqs. (20–18) and (20–19), has a mean
                                          and standard deviation of

                                                         μ y = ln μ n − ln 1 + C 2  ˆ σ y =  ln 1 + C 2
                                                                             n                 n
                                          The z variable for the companion normal y distribution is

                                                                            y − μ y
                                                                        z =
                                                                              ˆ σ y
   270   271   272   273   274   275   276   277   278   279   280