Page 270 - Solid Waste Analysis and Minimization a Systems Approach
P. 270

248     SOLID WASTE CHARACTERIZATION BY BUSINESS ACTIVITIES



                 where

                                                           t
                                                          ∑  X ij

                                                     X =  j=1
                                                      i
                                                            t

                                                                     /
                                                   ⎡  t            ⎤ 12
                                                   ⎢∑  ( X −  X ) 2  ⎥
                                                          ij
                                                               i
                                              S =   j ⎢ =1         ⎥
                                               i   ⎢     t −1      ⎥
                                                   ⎢               ⎥
                                                   ⎢               ⎥
                                                                   ⎦
                                                   ⎣
                    Figure 15.6 displays the canonical form of the standardized data matrix.



                 15.4.3 STEP 3: COMPUTE THE RESEMBLANCE MATRIX

                 A resemblance coefficient measures the overall degree of similarity between each
                 pair of objects in the standardized data matrix (Romesburg, 1984). Of the many resem-
                 blance coefficients available, the Euclidean distance coefficient was chosen. This coef-
                 ficient is based on the Pythagorean theorem and used in the following calculation:


                                                                      /
                                                   ⎡  n            ⎤ 12
                                                   ⎢∑  ( X −  X ) 2  ⎥
                                                               ik
                                                          ij
                                             d =    i ⎢ =1         ⎥
                                               jk  ⎢       n       ⎥
                                                   ⎢               ⎥
                                                   ⎣               ⎦



                 The Euclidean resemblance coefficient is considered a dissimilarity coefficient
                 because the smaller the value the more similar two objects are. Resemblance matrices
                 are square and symmetric; each column identifies the first object in the pair and each
                 row identifies the second object. The cell formed by the intersection of a column and





                                        SIC Code Groups
                   Waste          1           j             t
                   Material   μ       S 2   …      j      …      t
                      1      Z 11   Z 12    …     Z 1j    …     Z 1t
                      2      Z 21   Z 22    …      Z 2j   …     Z 2t
                       …       …      …             …             …
                      i       Z i1   Z i2   …      Z ij   …      Z it
                       …       …      …             …             …
                      n      Z n1   Z n2    …     Z nj    …     Z nt

                   Figure 15.6      Format of cluster analysis
                   standardized data matrix.
   265   266   267   268   269   270   271   272   273   274   275