Page 271 - Solid Waste Analysis and Minimization a Systems Approach
P. 271

MULTIVARIATE CLUSTER ANALYSIS AND DISCUSSION           249




                            First object in pair (SIC code group)

                                  1     2     3     …      n
                     Second object in pair  (SIC code group)  2  d 21  d –  –  –  –
                            1
                                  –
                                                           –
                                                     –
                                        –
                                              –
                                 d
                            3
                                                           –
                                                     –
                                              –
                                  31
                                        32
                                                     –
                                                           –
                            n    d n1  d n2   d n3  …      –       Figure 15.7      Format of cluster
                                                                   analysis resemblance matrix.
                    row contains the value of the resemblance coefficient for the given pair of objects
                    (Romesburg, 1984). For these reasons, only the lower half of the resemblance matrix
                    contains values. Figure 15.7 provides an example.


                    15.4.4 STEP 4: EXECUTE THE CLUSTER METHOD

                    The k-means method, a nonhierarchical clustering procedure was applied to group the
                    SIC code groups. The k-means method applies an iterative process to find the optimal
                    clustering for a specified number of groups (k). The k-means clustering method splits
                    a set of objects into a selected number of groups by maximizing between-cluster vari-
                    ation (SSA) relative to within-cluster variation (SSE). The following calculations are
                    used to calculate the sums of squares; the nomenclature of the cluster matrix is shown
                    below as well:




                                                       WASTE GROUPS (CLUSTERS)

                     Attribute 1                1                   2 ....                  k

                                                y 11                y 21                    y k1
                                                y 12                y 22                    y k2

                                                y 1n                y 2n                    y kn





                                               n
                                            k
                                    SST =  ∑  ∑  ( y −  y ) 2  = total sum of squares
                                                        ..
                                                   ij
                                           i=1 1  j=1
                                             k
                                    SSA =  n ∑  ( y −  y ) 2  = within cluster sum of squares
                                                                                   s
                                                      .
                                                       .
                                                  .
                                                 i
                                            i=1
                                               n
                                            k
                                    SSE =  ∑  ∑  (y −  y . ) =  between cluster sum of squares
                                                          2
                                                                              r
                                                   ij
                                                        i
                                           i=1  j=1
                                               +
                                    SST =  SSA SSE
   266   267   268   269   270   271   272   273   274   275   276