Page 288 - Solid Waste Analysis and Minimization a Systems Approach
P. 288

266     SOLID WASTE ESTIMATION AND PREDICTION



                    For the general model, there are k independent variables, denoted as x , x , . . ., x  k
                                                                                               1
                                                                                                   2
                 and n observations denoted as y , y , . . ., y . Each variable is expressed by the equation
                                                  1
                                                             n
                                                      2
                                           y = β   + β  x + β  x +     + β  x + ε
                                            i    0    1  i 1  2  i 2      k ki    i

                 The model represents  n equations describing how the dependent variables (annual
                 solid waste generation per company) are generated. Using matrix notation, the equations
                 can be written as

                                                         y =  X +βε


                 where


                                                                                       β ⎡ ⎡  ⎤
                                      y ⎡  ⎤        1 ⎡  x    x          x ⎤          ⎢  0 ⎥
                                     ⎢  1  ⎥       ⎢     11    21         k1 ⎥        ⎢ β 1 ⎥
                                      y
                                                                                      ⎢
                                 y =  ⎢ 2  ⎥   X =  ⎢ 1  x 12  x 22    x  k2 ⎥    β  = β  ⎥
                                     ⎢    ⎥           ⎢                     ⎥         ⎢  2 ⎥
                                     ⎢  ⎥          ⎢                        ⎥            ⎢  ⎥
                                        ⎥
                                     ⎣ y ⎢  n ⎦    ⎣ 1  x  n 1  x 2 n    x kn ⎦       ⎢   ⎥
                                                                                      ⎣ β k ⎦


                 The least squares solution for estimation of β involves finding β for which

                                                  SSE = (y − Xβ)′(y − Xβ)


                 is minimized. The minimization process involves solving β for the equation


                                                         ∂
                                                           ( SSE)  = 0
                                                        ∂b


                 The result reduces to the solution of β in


                                                        (X′X)β= X′y

                 Apart from the initial element, the ith row represents x-values that give rise to the
                 response y . Writing
                            i

                                              ⎡           n          n               n    ⎤
                                              ⎢  n       ∑  x  i 1  ∑  x  i 2       ∑  x ki ⎥
                                              ⎢          i=1        i=1             i=1   ⎥ ⎥
                                              ⎢  n       n          n                n    ⎥
                                              ⎢ ∑  x    ∑   x 2       xx            ∑  x ⎥
                                  A =  X X ′ =  ⎢  i=1  i 1  i=1  1i ∑ 1 i 2 i      i=1  i 1  ⎥
                                                               i
                                                                   i=1
                                              ⎢                                           ⎥
                                              ⎢                                           ⎥
                                              ⎢  n      n           n               n     ⎥
                                                            ki 1i ∑
                                              ⎢ ∑  x ki ∑  x x 1      xx  2i       ∑  x 2 ki ⎥
                                                                       ki
                                              ⎣ i=1     i= 1       i= 1            i= 1   ⎦
   283   284   285   286   287   288   289   290   291   292   293