Page 188 - The Combined Finite-Discrete Element Method
P. 188

CONSTANT STRAIN TETRAHEDRON FINITE ELEMENT        171

             A deformation gradient in the form

                                            ∂x c  ∂x c  ∂x c
                                                         
                                          ∂x i  ∂y i  ∂z i  
                                                         
                                          ∂y c  ∂y c  ∂y c  
                                      F =                                    (4.209)
                                                         
                                            ∂x i  ∂y i
                                                     ∂z i 
                                            ∂z c  ∂z c  ∂z c
                                                         
                                            ∂x i  ∂y i  ∂z i
           is obtained using the initial base. This base is given by the matrix

                                                                   
                           
 i x  
 j x  
 k x  x 1i − x 0i  x 2i − x 0i  x 3i − x 0i
                          
   
        =   y 1i − y 0i                       (4.210)
                            i y  j y  
             y 2i − y 0i  y 3i − y 0i  
                                   k y
                           
 i z  
 j z  
 k z  z 1i − z 0i  z 2i − z 0i  z 3i − z 0i
           It is worth noting that node 0 in the initial configuration coincides with the origin of the
           initial frame.
             Using coordinate transformations explained above, the following expression for the
           deformation gradient is obtained:

                                                      
                      ∂x c  ∂x c  ∂x c     ∂x c  ∂x c  ∂x c
                     ∂x i  ∂y i  ∂z i     ∂
x i  ∂
y i  ∂
z i     −1
                                                         
                                                          i x  j x  k x
                     ∂y c  ∂y c  ∂y c     ∂y c  ∂y c  ∂y c  
                F =                  =                 
 i y  
 j y  
   (4.211)
                                                                    k y
                      ∂x i  ∂y i           ∂
x i  ∂
y i  ∂
z i 
                                                      
                                ∂z i   
                                                             i z  j z  k z
                      ∂z c  ∂z c  ∂z c     ∂z c  ∂z c  ∂z c
                                                      
                      ∂x i  ∂y i  ∂z i     ∂
x i  ∂
y i  ∂
z i
             In a similar way, the velocity gradient is given by
                                                        
                    ∂v xc  ∂v xc  ∂v xc    ∂v xc  ∂v xc  ∂v xc
                   ∂x i  ∂y i   ∂z i     ∂
x i  ∂
y i  ∂
z i        −1
                                                           
                                                            i x  j x  k x
                   ∂v yc  ∂v yc  ∂v yc     ∂v yc  ∂v yc  ∂v yc  
              L =                    =                   
 i y  
 j y  
   (4.212)
                                                                       k y
                    ∂x i  ∂y i             ∂
x i  ∂
y i  ∂
z i 
                                                        
                                ∂z i   
                                                               i z  j z  k z
                    ∂v zc  ∂v zc  ∂v zc    ∂v zc  ∂v zc  ∂v zc
                                                        
                    ∂x i  ∂y i   ∂z i      ∂
x i  ∂
y i  ∂
z i
           As explained before, the deformation gradient is comprised of either rotation followed
           by stretch
                                             F = VR                            (4.213)
           or stretch followed by rotation
                                             F = RU                            (4.214)
   183   184   185   186   187   188   189   190   191   192   193