Page 188 - The Combined Finite-Discrete Element Method
P. 188
CONSTANT STRAIN TETRAHEDRON FINITE ELEMENT 171
A deformation gradient in the form
∂x c ∂x c ∂x c
∂x i ∂y i ∂z i
∂y c ∂y c ∂y c
F = (4.209)
∂x i ∂y i
∂z i
∂z c ∂z c ∂z c
∂x i ∂y i ∂z i
is obtained using the initial base. This base is given by the matrix
i x
j x
k x x 1i − x 0i x 2i − x 0i x 3i − x 0i
= y 1i − y 0i (4.210)
i y j y
y 2i − y 0i y 3i − y 0i
k y
i z
j z
k z z 1i − z 0i z 2i − z 0i z 3i − z 0i
It is worth noting that node 0 in the initial configuration coincides with the origin of the
initial frame.
Using coordinate transformations explained above, the following expression for the
deformation gradient is obtained:
∂x c ∂x c ∂x c ∂x c ∂x c ∂x c
∂x i ∂y i ∂z i ∂
x i ∂
y i ∂
z i −1
i x j x k x
∂y c ∂y c ∂y c ∂y c ∂y c ∂y c
F = =
i y
j y
(4.211)
k y
∂x i ∂y i ∂
x i ∂
y i ∂
z i
∂z i
i z j z k z
∂z c ∂z c ∂z c ∂z c ∂z c ∂z c
∂x i ∂y i ∂z i ∂
x i ∂
y i ∂
z i
In a similar way, the velocity gradient is given by
∂v xc ∂v xc ∂v xc ∂v xc ∂v xc ∂v xc
∂x i ∂y i ∂z i ∂
x i ∂
y i ∂
z i −1
i x j x k x
∂v yc ∂v yc ∂v yc ∂v yc ∂v yc ∂v yc
L = =
i y
j y
(4.212)
k y
∂x i ∂y i ∂
x i ∂
y i ∂
z i
∂z i
i z j z k z
∂v zc ∂v zc ∂v zc ∂v zc ∂v zc ∂v zc
∂x i ∂y i ∂z i ∂
x i ∂
y i ∂
z i
As explained before, the deformation gradient is comprised of either rotation followed
by stretch
F = VR (4.213)
or stretch followed by rotation
F = RU (4.214)