Page 186 - The Combined Finite-Discrete Element Method
P. 186

CONSTANT STRAIN TETRAHEDRON FINITE ELEMENT        169

           transformation of vector components from the deformed initial frame into the global frame
           is given by
                                             ˘   ˘   ˘
                                                      
                                           i x  j x  k x    
                                     b x                  b ˘x
                                                      
                                    b y    ˘   ˘   ˘   b ˘y                (4.197)
                                         =  i y  j y  k y 
                                     b z                  b ˘z
                                                 ˘
                                                     ˘
                                             ˘ i z  j z  k z
           The transformation matrix
                                            ˘   ˘  ˘
                                                    
                                            i x  j x  k x
                                            ˘   ˘  ˘
                                                    
                                           i y  j y  k y                     (4.198)
                                            ˘   ˘  ˘
                                            i z  j z  k z
           is called the deformed initial transformation matrix.
             Transformation of vector components from the global frame into the initial and deformed
           initial frames is obtained using inverse initial transformation matrices:
                                                                   −1
                                                        
                              −1                  ˘   ˘  ˘        
                       
   
   
                          i x  j x  k x
               a 
x    i x  j x  k x   a x        b ˘x                   b x
                                                                 ˘
                                                              ˘
                                                          ˘
                                                        
                                                                   
                               k y
               a 
y    =  
 i y  
 j y  
     a y    and    b ˘y    =  i y  j y  k y     b y    (4.199)
               a 
z    
 i z  
 j z  
 k z  a z   b ˘z    ˘   ˘   ˘      b z
                                                          i z  j z  k z
           Deformation over the domain of a four noded tetrahedron is approximated using defor-
           mation at four nodes of the tetrahedron. This approximation is therefore of the type
                                      x c = α x x i + β x y i + γ x z i         (4.200)
                                      y c = α y x i + β y y i + γ y z i
                                      z c = α z x i + β z y i + γ z z i
           where x c ,y c and z c represent the current coordinates corresponding to the deformed
           configuration, while x i ,y i and z i represent the initial coordinates corresponding to the
           undeformed configuration. Both sets of coordinates refer to the global frame:
                                             (i, j, k)                         (4.201)

           It follows from (4.200) that the deformation gradient over the domain of the tetrahedron
           finite element is constant. The easiest way to calculate this deformation gradient is to use
           the deformed initial frame:
                                              ˘ ˘ ˘
                                             (i, j, k)                         (4.202)
           Using this frame, the following matrix of the deformation gradient is obtained:

                                                         
                                            ∂x c  ∂x c  ∂x c
                                          ∂
x i  ∂
y i  ∂
z i  
                                                         
                                          ∂y c  ∂y c  ∂y c  
                                      F =                                    (4.203)
                                                         
                                            ∂
x i  ∂
y i
                                                     ∂
z i 
                                            ∂z c  ∂z c  ∂z c
                                                         
                                            ∂
x i  ∂
y i  ∂
z i
   181   182   183   184   185   186   187   188   189   190   191