Page 313 - The Mechatronics Handbook
P. 313

0066_frame_C14.fm  Page 27  Wednesday, January 9, 2002  1:50 PM









                         Performance integrands W x (⋅) and W u (⋅) are real-valued, positive-definite, and continuously differen-
                                                                                           −1
                       tiable integrand functions. Using the properties of Φ one concludes that inverse function Φ  is integrable.
                       Hence, integral

                                                   ∫ ( Φ ()) G diag u ) u
                                                            T
                                                              1
                                                                   (
                                                       1
                                                       –
                                                                     2w
                                                              –
                                                         u
                                                                       d
                       exists.
                       Example
                       Consider a nonlinear dynamic system
                                                 dx         3
                                                 ------ =  ax +  bu ,  u min ≤  u ≤  u max
                                                 dt
                       Taking note of
                                                           ∫
                                                                   T
                                                                           (
                                                               1
                                                                            2w
                                                                      1
                                           W u u() =  ( 2w + 1) ( Φ ()) G diag u ) u
                                                              –
                                                                      –
                                                                               d
                                                                 u
                       one has the positive-definite integrand
                                         ∫
                                                                     --u +
                                                          --u tanh u +
                               W u u() =  3 tanh uG u u =  1  3  – 1  1  2  1  ( 1 u ),  G –  1  =  1
                                                                                  2
                                             –
                                              1
                                                  1
                                                    2
                                                 –
                                                                          --ln
                                                                               –
                                                                                            --
                                                     d
                                                                     6
                                                          3
                                                                                            3
                                                                          6
                         In general, if the hyperbolic tangent is used to map the saturation effect, for the single-input case, one has
                                                                                   2w+1
                                                                           1u
                                                           1 u
                                                                                  u
                                                                                  2 ∫
                                                   ∫
                                                                           –
                                   W u u() =  ( 2w +  1) u tanh --- u =  u 2w+1 tanh --- –  k --------------- u
                                                           –
                                                     2w
                                                              d
                                                                                       d
                                                                            k
                                                                                      2
                                                            k
                                                                                     u
                                                                                 k –
                         Necessary conditions that the control function u(·) guarantees a minimum to the Hamiltonian
                                                ∫
                                                        T
                             H =  W x x() + ( 2w +  1) ( Φ ()) G diag u ) u +  ∂Vx()  T [  ) +  Bx()u 2w+1 ]
                                                    1
                                                                        ----------------- Fx, r(
                                                   –
                                                           –
                                                               (
                                                                 2w
                                                           1
                                                                    d
                                                      u
                                                                          ∂x
                       are: first-order necessary condition n1,
                                                           ∂H
                                                           ------- =  0
                                                           ∂u
                       and second-order necessary condition n2,
                                                            2
                                                           ∂ H
                                                         --------------------- >  0
                                                         ∂u ×  ∂u T
                                                               κ
                         The  positive-definite return function V(·), V ∈ C , κ  ≥ 1, is
                                              ()
                                            Vx 0 =  inf Jx 0 , u(  ) =  inf Jx 0 , Φ ·()) ≥  0
                                                                     (
                                                    u∈U
                         The Hamilton–Jacobi–Bellman equation is given as
                          ∂V                         –  1  T  – 1  2w     ∂Vx() T            2w+1 
                                                   ∫
                                                                  (
                                                                                 [
                                   
                                                        u
                                                                       d
                         – ------- =  min W x x() +  ( 2w + 1) ( Φ ()) G diag u ) u +  ----------------- Fx, r(  ) +  Bx()u  ] 
                          ∂t    u∈U                                         ∂x                   
                       ©2002 CRC Press LLC
   308   309   310   311   312   313   314   315   316   317   318