Page 648 - The Mechatronics Handbook
P. 648

0066_Frame_C20.fm  Page 118  Wednesday, January 9, 2002  1:47 PM










                                                                      z   P(x,y,z)  H r
                                                                     a z   r  r 1
                                                                             a
                                                                      O
                                                                        r 2            y
                                                                      f
                                                                        i
                       FIGURE 20.137  Planar current loop.      x

                       In general, the magnetic field quantities are derived using


                                                                       1
                                                                         ∫
                                                     ∫
                                              B =  4p ° l dl × 2  r 0  or  H =  4p ° l dl × 2  r 0
                                                 m 0
                                                 ------i ---------------
                                                                      ------i ---------------
                                                                             r
                                                        r
                       and the Ampere circuital law gives
                                               ∫ l ° H dl =  i total  or  ∫ l ° H dl =  Ni
                                                                     ⋅
                                                   ⋅
                         Making use of these expressions and taking note of the variables defined in Fig. 20.137, we have


                                                 1
                                                    ∫
                                            H =  4p ° dl × 3  r 1  and  B =  m 0  ∫  dl × 3  r 1
                                                                      4p °
                                                                      ------i ---------------
                                                ------i ---------------
                                                     l
                                                       r 1                l  r 1
                       where dI = a φ a dφ = (−a x  sinφ + a y  cosφ)a dφ and r 1  = a x  (x − acosφ) + a y  (y − asinφ) + a z  z.
                       Hence,
                                                                 (
                                     dI ×  r 1 =  [ a x zcos f +  a y zsin f a z ysin f +  xcos f a)]a df.
                                                                              –
                                                              –
                                                     2   2
                       Then, neglecting the small quantities (a  << r ), we have
                                                                       3 
                              r 1 =  ( x +  y + z +  a –  2axcos f 2aysin f) 3/2 ≈  r 1 –  2ax  f –  2ay  f   3/2
                                        2
                                           2
                               3
                                    2
                                               2
                                                                                     ---------sin
                                                                            ---------cos
                                                         –
                                                                        
                                                                            r 2       r 2
                       Therefore, one obtains
                                                 1   1    3ax      3ay    
                                                 ---- =  ---- 1 +  ---------cos f +  ---------sin f
                                                      3 
                                                 3          2         2    
                                                 r 1  r    r         r
                       Thus,
                                                                           
                                                                                               
                                                                          1
                          B =  m 0 a  ∫ 2p [ a x zcos f +  a y zsin f a z ysin f +  xcos f a)]a---- 1 +  3ax  f +  3ay  f df
                                                       (
                                                                               ---------cos
                              --------i
                                                                                         ---------sin
                                                    –
                                                                     –
                                                                           3 
                              4p  0                                       r     r  2     r 2   
                              m 0 a  2  3xz  3yz   3x 2  3y 2  
                            =  -----------i a x -------- +  a y -------- –  a z  -------- +  ------- –  2 
                              4pr 3   r 2   r 2     r 2  r 2
                       ©2002 CRC Press LLC
   643   644   645   646   647   648   649   650   651   652   653