Page 652 - The Mechatronics Handbook
P. 652

0066_Frame_C20.fm  Page 122  Wednesday, January 9, 2002  1:47 PM









                         Using Stokes’s theorem, one has

                                                                         
                                                             ∫
                                                                              ∫
                                                                     ⋅
                                                     (
                                       T =  i  ∫   s ° dA ×  ∇ rB) B ( ∇ ×  r) dA =  idA ×  B
                                                       ⋅
                                                                               s °
                                                              s °
                                                           –
                                                                         
                       or
                                                     T =  iA × B =  m ×  B
                         The electromagnetic torque T acts on the infinitesimal current loop in a direction to align the magnetic
                       moment m with the external field B, and if m and B are misaligned by the angle θ, we have
                                                         T =  mBsin q

                       The incremental potential energy and work are found as
                                                                                             ⋅
                             dW =  dΠ =  T dq =  mBsin q dq   and    W =  Π =  – mBcos q =  – mB
                         Using the electromagnetic force, we have

                                                                         ⋅
                                                dW =  – dΠ =  F dr =  – ∇Π dr
                                                               ⋅
                       and

                                                                         ⋅
                                                                ⋅
                                                             (
                                                 F =  – ∇Π =  ∇ mB) =  ( m ∇)B
                       Coordinate Systems and Electromagnetic Field
                       The transformation from the inertial coordinates to the permanent-magnet coordinates is

                                          cos q y cos  q z           cos q y sin  q z    – sin  q y  x
                         r =  T r r  = sin q x sin q y cos q z –  cos q x sin  q z  sin q x sin q y sin q z +  cos q x sin  q z  sin q x cos q y y
                                   cos q x sin q y cos q z +  sin q x sin  q z  cos q x sin q y sin q z –  sin q x cos  q z  cos q x cos  q y  z

                             x         x
                         r =  y  ,  r =  y
                             z         z

                         We use the transformation matrix


                                         cos q y cos  q z          cos q y sin  q z     – sin  q y
                             T r  = sin q x sin q y cos q z –  cos q x sin  q z  sin q x sin q y sin q z +  cos q x sin  q z  sin q x cos  q y
                                 cos q x sin q y cos q z +  sin q x sin  q z  cos q x sin q y sin q z –  sin q x cos  q z  cos q x cos  q y

                         If the deflections are small, we have


                                                           1    q z  −q y
                                                    T rs =
                                                           −q z  1   q x
                                                                –    1
                                                           q y   q x

                       ©2002 CRC Press LLC
   647   648   649   650   651   652   653   654   655   656   657