Page 649 - The Mechatronics Handbook
P. 649

0066_Frame_C20.fm  Page 119  Wednesday, January 9, 2002  1:47 PM









                          Furthermore, using the coordinate transformation equations, in the spherical coordinate system one
                       has

                                                         2
                                                  B =  m 0 a     q +  a q sin q)
                                                      -----------i 2a r cos(
                                                      4pr 3
                         We have the expressions for the far-field components

                                                   2   q           2   q
                                           B r =  m 0 a cos  B q =  m 0 a sin  B f =  0
                                                ----------------------i,
                                                                ----------------------i,
                                                  2pr 3           4pr 3
                       (due to the symmetry about the z axis, the magnetic flux density does not have the B φ  component).
                         Using the documented technique, one can easily find the magnetic vector potential. In particular, in
                       general

                                                                ∫
                                                         A =  4p ° l dl
                                                             m 0
                                                             ------i -----
                                                                  r 1
                                     2
                                         2
                         Assuming that a  << r , gives the following expression:
                                                  1
                                                  ---- =  1   ax  f +  ay  f  
                                                      -- 1 +
                                                                    -----sin
                                                            -----cos
                                                  r 1  r   r 2     r 2
                       Therefore,
                                                                                   
                                                                 
                                                                1
                                      A =  m 0 a  ∫ 2p  – (  a x sin f +  a y cos f)-- 1 +  ax  f +  ay  f d f
                                          --------i
                                                                     -----cos
                                                                              -----sin
                                           4p  0                r    r  2    r  2  
                                           m 0 a
                                        =  -----------i –(  a x y +  a y x)
                                          4pr 3
                       Hence, in the spherical coordinate system, we obtain
                                                                         ⋅
                                                     ⋅
                                              A =  ( A a r )a r +  ( Aa f )a f +  (  Aa q )a q
                                                               ⋅
                                                   m 0 a
                                                 =  -----------ia f sin q =  A f a f
                                                   4pr 2
                         It should be emphasized that the equations derived can be expressed using the magnetic dipole.
                         However, in the microtransducer studied, high-fidelity analysis should be performed. Hence, let us
                       perform the comprehensive analysis.
                         The vector potential is found to be

                                                      m 0 ai  2p   cos f df
                                               (
                                             A f r,q) =  ---------- ∫  ---------------------------------------------------------
                                                       4p  0  a +  r –  2arsin qcos f
                                                               2
                                                                  2
                       and
                                                                      (
                                               1 ∂ sin(  qA f )     1∂ rA f )
                                         B r =  --------------------------------------,  B q =  – ------------------,  B f =  0
                                              rsin q  ∂q            r  ∂r


                       ©2002 CRC Press LLC
   644   645   646   647   648   649   650   651   652   653   654