Page 653 - The Mechatronics Handbook
P. 653

0066_Frame_C20.fm  Page 123  Wednesday, January 9, 2002  1:47 PM









                         It should be emphasized that we use the 3-2-1 orthogonal transformation matrix for the z-y-x Euler
                       rotation sequence, and θ x , θ y , θ z  are the rotation Euler angle about the x, y, and z axes.
                         The field B and gradients of B produced by the microcoils fixed in the inertial frame and expressed
                       assuming that the electromagnetic fields can be described by the second-order Taylor series. Expanding
                       B about the origin of the x, y, z system as a Taylor series, we have [18]

                                                 B e =  B +  ( r ∇)B +  1  ) B
                                                                  -- r ∇⋅(
                                                            ⋅
                                                                         2
                                                                  2
                       or
                                                                      2
                                                   B ei =  B i +  --------r +  1 T ∂ B i
                                                            ∂B i
                                                                  --r ----------r
                                                            ∂r    2  ∂r  2
                       where


                                                                           ∂B i  ∂B i  ∂B  i
                                                                          ∂------  ∂------  ∂------
                                                                                ∂x
                                                                           ∂x
                                                                                     ∂x
                                                                          --------- --------- ---------
                                                                           ∂x   ∂y   ∂z
                                                                   2       ∂B   ∂B   ∂B
                                    -------- =  ∂B i  ∂B i  ∂B i  and  ---------- =  ∂------ i  ∂------ i  ∂------ i
                                                                  ∂ B i
                                    ∂B i
                                                                                ∂y
                                                                                      ∂y
                                                                           ∂y
                                    ∂r     -------- -------- --------  ∂r 2  --------- --------- ---------
                                                ∂y
                                           ∂x
                                                    ∂z
                                                                           ∂x   ∂y   ∂z
                                                                           ∂B i  ∂B i  ∂B  i
                                                                          ∂------  ∂------  ∂------
                                                                                      ∂z
                                                                           ∂z
                                                                                ∂z
                                                                          --------- --------- ---------
                                                                           ∂x   ∂y   ∂z
                       We denote
                                                                           ∂B i
                                                                          ∂------
                                                                           ∂j
                                               B ij =  ∂B i  and   B ij()k =  ----------
                                                    --------
                                                     ∂j                   ∂k
                       Then,
                                                                   2     B ix()x B ix()y B ix()z
                                   -------- =  [ B ix  B iy  B iz ]  and  ---------- =
                                   ∂B i
                                                                 ∂ B i
                                    ∂r                            ∂r 2   B iy()x B iy()y B iy()z
                                                                         B iz()x  B iz()y  B iz()z
                       Hence, the first-order gradients are given as
                                                     ∂B i
                                                    ∂------
                                                     ∂j
                                          B eij =  B ij +  ----------r =  B ij +  [B ij()x B ij()y B ij()z ] r
                                                    ∂r
                         The expanded field is expressed in the permanent-magnet coordinates as
                                                                         2
                                                            ⋅
                                                 B e =  B +  ( r ∇)B +  1  ) B
                                                                  -- r ∇⋅(
                                                                  2
                       where B =  T r B  and  ∇ =  T r ∇  .
                       ©2002 CRC Press LLC
   648   649   650   651   652   653   654   655   656   657   658