Page 655 - The Mechatronics Handbook
P. 655

0066_Frame_C20.fm  Page 125  Wednesday, January 9, 2002  1:47 PM









                       the terms are


                                                      – B exy z +  B exz y            0
                                    r × ( M ∇)B e =  M x B exx zB exz x–     and    M × B e =  M – B ez
                                          ⋅
                                                                                   x
                                                     −B exx y +  B exy x             B ey

                       Therefore,

                                             T =  M x∫  ( B exz –  B exy z) vd
                                                          y
                                              x
                                                     v
                                             T =  – M x∫  B ez v +  M x∫  ( B exx zB exz x) v
                                                          d
                                                                       –
                                                                             d
                                              y
                                                      v          v
                       and
                                             T =  M x∫  B ey v +  M x∫  ( B exy –  B exx y) v
                                                                     x
                                                         d
                                                                             d
                                               z
                                                      v         v
                       The terms in the derived equations must be evaluated.
                         Let us find the analytic expression for the electromagnetic torque  T  . In particular, we have
                                                                             x
                                                ∫
                                                                        ∫
                                   ∫  B exz y  v =  B xz y  v +  B xx(  )z xy  v +d  B xy(  )z y v +d  B xz(  )z ∫  zy  vd
                                                            ∫
                                                                           2
                                         d
                                                    d
                                   v             v           v           v          v
                       where
                                             ∫  y  v =  0,  ∫  xy  v =  0,  ∫  zy  v =  0
                                                             d
                                                d
                                                                          d
                                             v           v            v
                       and
                                                  1 --l  R  2  2
                                         ∫  y v =  2 1 ∫  ∫  ∫  R – z  y ydzdx =  1  4  1  4
                                           2
                                                                        --plR =
                                                              2
                                            d
                                                                                --vR
                                                                   d
                                         v        – --l  −R  2  z 2     4       4
                                                  2     –  R –
                       Therefore,
                                                                  1
                                                    x ∫
                                                  M   B exz yv =  M --B xy(  )z vR  4
                                                           d
                                                      v           x 4
                       Furthermore,
                                                    x∫  B exy zv =  1     4
                                                  M        d    M --B xy(  )z vR
                                                                 x
                                                      v           4
                       Thus, for  T  , one has
                                x
                                    T =  M x∫  ( B exz yB exy z) v =  M   1  )z vR –  1  )z vR 4   =  0
                                                                         4
                                                  –
                                                        d
                                                                           --B xy(
                                                                 --B xy(
                                     x                         x  4       4       
                                            v
                       ©2002 CRC Press LLC
   650   651   652   653   654   655   656   657   658   659   660