Page 723 - The Mechatronics Handbook
P. 723

0066_Frame_C23  Page 31  Wednesday, January 9, 2002  1:53 PM









                                  TABLE 23.10  Properties of the z Transform
                                  z transform                     ({f k }) = F(z)
                                  Convolution                  ({f k  ∗ g k }) =  ({f k }) ⋅  ({g k })
                                                               ({f k  ⋅ g k }) =  ({f k }) ∗  ({g k })
                                  Forward shift                  ({f k+1 }) = z ({f k }) = zF(z)
                                                                               −1
                                  Backward shift                  ({f k−1 }) =  ({f k }) = z F(z)
                                  Linearity                   ({af k  + bg k }) = a ({f k }) + b ({g k })
                                                                    k
                                                                          −1
                                  Multiplication                  ({a f k }) = F(a z)
                                                                              1
                                                                              –
                                  Final value                     lim f k =  lim ( 1 –  z )Fz()
                                                                  k→∞   k→1
                                  Initial value                     f 0 =  lim Fz()
                                                                        z→∞
                                                 Time Domain            z Transform
                                                      1,  k =  0
                                  Impulse        d k =            {δ k } = 1,   z  ∈ C
                                                      0,  k ≠  0
                                                      0,  k <  0        z
                                                                  (
                                  Step function  s k =             s k ) =  -----------,  z >  1
                                                      1,  k ≥  0       z –  1
                                                                         z
                                  Ramp function  x k  = k ⋅ σ k       Xz() =  ------------------,  z >  1
                                                                      ( z –  1) 2
                                                                        z
                                                     k
                                  Exponential    x k  = a  ⋅ σ k       Xz() =  -----------,  z >  a
                                                                      z –  a
                                                                          z sin
                                                                            w
                                  Sinusoid       x k  = sin ωk ⋅ σ k       Xz() =  --------------------------------------,  z >  1
                                                                       2
                                                                      z –  2z cos w +  1
                                                 x(t)                 {x }
                                                         Sampling       k
                                                           device

                       FIGURE 23.16  A continuous-time signal x(t) and a sampling device that produces a sample sequence {x k }.

                       and where the sampling period T is multiplied to ensure that the averages over a sampling period of the
                       original variable x and the sampled signal x ∆ , respectively, are of the same magnitude. A direct application
                       of the discretized variable x ∆ (t) in Eq. (23.53) verifies that the spectrum of x ∆  is related to the z transform
                       X(z) as

                                                                ∞
                                                   ⋅
                                              {
                                                                                    (
                                      (
                                                                       (
                                   X ∆ iw) =    xt()    T t()} =  T ∑  x k  exp – iwkT) =  TX e iwT )  (23.55)
                                                               k=−∞
                       Obviously, the original variable x(t) and the sampled data are not identical, and thus it is necessary to
                       consider the distortive effects of discretization. Consider the spectrum of the sampled signal x ∆ (t) obtained
                       as the Fourier transform
                                                      {
                                                                 {
                                           X ∆ iw) =    x ∆ t()} =    xt()} ∗  {  T t()}        (23.56)
                                             (
                       where
                                                       ∞
                                                                       T
                                                           
                                                               ------ k =
                                           {   T t()} =  ∑  dw –  2p    ------  2p/T w()       (23.57)
                                                                T 
                                                           
                                                      k=−∞             2p
                      ©2002 CRC Press LLC
   718   719   720   721   722   723   724   725   726   727   728