Page 759 - The Mechatronics Handbook
P. 759

0066_Frame_C24  Page 7  Thursday, January 10, 2002  3:43 PM









                       Hence, the state in equilibrium can be computed from (24.32) to (24.34), setting all the derivatives equal
                       to zero, i.e.,


                                         R
                                        −---x 1Q +  1  0 ⇒ x 1Q =  E Q                          (24.35)
                                               ---E Q =
                                                               ------
                                         L     L                R
                                               – x 3Q =  0 ⇒  x 3Q =  0                         (24.36)
                                       K 1                      K 1         K 1 E Q
                                   -----------------------------x 1Q – g =  0 ⇒ x 2Q =  -------x 1Q – K 2 =  ------------ –  K 2  (24.37)
                                     (
                                   mx 2Q +  K 2 )               mg          mgR
                         The setting now is adequate to build the linearized model in the incremental input ∆e(t) and the
                                                             T
                       incremental state ∆x(t) = [∆x 1 (t) ∆x 2 (t) ∆x 3 (t)] . The result is
                                               d∆ x 1 t()  R        1
                                               -------------------- =  –  ---∆ x 1 t() +  ---∆et()  (24.38)
                                                  dt       L        L

                                               d∆ x 2 t()
                                               -------------------- =  – ∆ x 3 t()              (24.39)
                                                  dt

                                               d∆ x 3 t()  Rg      Rmg 2
                                               -------------------- =  ------∆ x 1 t() – -------------∆ x 2 t()  (24.40)
                                                  dt     E Q       K 1 E Q

                         If we define as the system output, the sphere position h(t), we can then compare the above equations
                       with (24.23) and (24.24) to obtain



                                          R
                                         – ---  0    0           1
                                          L                      ---        0
                                    A =   0    0    – 1 ,  B =   L  ,  C =  1  ,   D =  0       (24.41)
                                                                 0
                                         Rg   Rmg  2                        0
                                         ------  – --------------  0  0
                                         E Q  K E
                                                1 Q
                         In the sequel we will drop the prefix ∆, but the reader should bear in mind that the model above is
                       linear in the incremental components of the state, the inputs and the outputs around a chosen equilib-
                       rium point.


                       Linear State Space Models
                       Our starting point is now the linear time invariant state space model

                                                    dx t()
                                                    ------------- =  Ax t() +  Bu t()           (24.42)
                                                      dt
                                                      y t() =  Cx t() + Du t()                  (24.43)

                         The solution to Eq. (24.42), subject to x(t o ) = x o , is given by

                                                    (
                                                               (
                                            x t() =  e A t−t ) x o + ∫ t  e A t−t ) Bu t() t  ∀ t ≥  t o  (24.44)
                                                      o
                                                                       d
                                                            o t
                       ©2002 CRC Press LLC
   754   755   756   757   758   759   760   761   762   763   764