Page 289 - Thermodynamics of Biochemical Reactions
P. 289

Thermodynamics of Biochemical Reactions at Specified pH   289



        To make the calculation at the other temperatures, we can use calcdGHT to produce the function of T, pH and ionic strength
        that  will give AGO and AHo at other temperatures.

               calcdGHT [speciesmat-1  : =
               ModuleIEdGzero, dGzeroT,dHzero,zi,  nH, gibbscoeff,pHterm,
               isterm,gpfnsp,dGfn,dHfn),(*This    program produces the function of T (in Kelvin),  pH and
               ionic strength (is) that gives the standard transformed Gibbs energy of formation of a
               reactant  (sum of species) and the standard transformed enthalpy.  The input speciesmat
                is a matrix that gives the standard Gibbs energy of formation at 298.15  K,  the
                standard enthalpy of formation at  298.15 K,  the electric charge, and the number of
               hydrogen atoms in each species. There is a row in the matrix for each species of the
               reactant. gpfnsp is a list of the functions for the transformed Gibbs energies of the
                species.  The output is in the form {dGfn,dHfn),  and energies are expressed in kJ
               molA-l.  The values of the standard transformed Gibbs energy of formation and the
                standard transformed enthalpy of formation can be calculated at any temperature in the
                range 273.15  K to 313.15  K,  any pH in the range 5  to 9,  and any ionic strength in the
                range 0 to 0.35  m by use of the assignment operator(/.).*)
                {dGzero,dHzero,zi,nH}=Transpose[speciesmat];
                gibbscoeff=9.20483*1OA-3*t-l.284668*lOA-5*tA2+4.95l99*lOA-8*tA3;
               dGzeroT=dGzero*t/298.15+dHzero*(l-t/298.15);
               pHterm    nH*8.31451*(t/1000)*LOg[10A-pH];
                istennG =  gibbscoeff*((ziA2) -  nH)*(isA.5)/(1 +  1.6*isA.5);
                gpfnsp=dGzeroT - pHterm -  istennG;
                dGfn=-8.31451*(t/100O)*Log[A~ply[Plus,Exp[-l*gpfnsp/(8.3l45l*(t/lOOO)~lll;
               dIifn=-tA2*D[dGfn/t,t];
                {dGfn,dHfn)l
        (b) Calculate the standard transformed Gibbs energies of of the reactants and the reaction at 283.15 K.

                atp283=calcdGHT[atpspl [[111/.t->283.15;




                adp283=calcdGHT[adpspl ttlIl/.t->283.15;



                dGerx283=calctrGerx[at~283+h20283+de==adp283+pi283,~5,6,7,8,9~,~0,.1,.25~1
                {{-34.6913,  -32.9147,  -32.2468},  {-35.3381,  -33.4522,  -32.8351},  {-36.9415,  -35.8386,  -:
                  (-41.4708,  -40.4698,  -40.0894},  I-46.9055,  -45.7905,  -45.4228}}

                TableForm[Transpose[dGerx283] ,TableHeadings->{{'I   =  0 M1a,"I =  0.10  M","I  =  0.25
                M"),{"pH  5","pH  6","pH 7","pH  8","gH 9")>1
                             PH  5       PH 6        PH  7       PH  8       PH  9
                I = O M       -34.6913   -35.3381    -36.9415    -41.4708    -46.9055

                I  =  0.10  M   -32.9147   -33.4522   -35.8386   -40.4698    -45.7905
                I  =  0.25  M   -32.2468   -32.8351   -35.3814   -40.0894    -45.4228

        (c) Calculate the standard transformed Gibbs energies of the reactants and the reaction at 313.15 K.

                atp313=calcdGHT[atpspl ~[111/.t->313.15;



                adp313=calcdGHT[adpspl [[lIl/.t->313.15;
   284   285   286   287   288   289   290   291   292   293   294