Page 164 - Water Engineering Hydraulics, Distribution and Treatment
P. 164

142
                                                   Water Hydraulics, Transmission, and Appurtenances
                                          Chapter 5
                                      EXAMPLE 5.36 HEAD LOSS DETERMINATION USING HAZEN–WILLIAMS FORMULA
                                      Determine the loss of head in ft∕1,000 ft (m∕1,000 m) for a 12 in. (0.3048 m) pipe with a flow of 1 MGD (3.785 MLD) and a C=100.
                                      Assume that the pipe is flowing full.
                                      Solution 1 (US Customary System):
                                      Method 1—use Fig. 5.16a.
                                          When Q = 1 MGD, d = 12 in., C = 100
                                          h = 2.07 ft∕1,000 ft.
                                           f
                                      Method 2—use Fig. 5.17.
                                          When Q = 1MGD = 1.547 ft /s, d = 12 in., C = 100
                                          h = 2.07 ft∕1,000 ft.  3
                                           f
                                      Method 3—use Appendix 14.
                                          When Q = 1MGD = 684.4 gpm, d = 12 in., C = 100
                                          h = 2.07 ft∕1,000 ft.
                                           f
                                      Method 4—use Eq. (5.37).
                                          h = 10.6(Q MGD ∕C) 1.85 L∕D 4.87                                                      (5.37)
                                           f
                                          h = 10.6(1∕100) 1.85 1,000∕(12∕12) 4.87 .
                                           f
                                           s = 2.07 ft∕1,000 ft.
                                      Solution 2 (SI System):
                                      Method 1—use Fig. 5.16a.
                                          When Q = 3.785 MLD, D = 0.3048 m, C = 100, after all metric units are converted to the US customary units
                                          h = 2.07 ft∕1,000 ft = 2.07 m∕1,000 m.
                                           f
                                      Method 2—use Fig. 5.17.
                                          Read Solution 1 after SI units are converted to the US customary units.
                                          h = 2.07 m∕1,000 m.
                                           f
                                      Method 3—use Appendix 14.
                                                         3
                                          When Q = 0.0438 m /s = 43.8 L/s, D = 0.3048 m = 30.48 cm, and C = 100
                                          h = 2.07 m∕1,000 m.
                                           f
                                      Method 4—use Eq. (5.37).
                                                         3
                                          where Q = 0.0438 m /s, D = 0.3048 m, L = 1,000 m and C = 100
                                                       ∕C) 1.85 L∕D 4.87                                                        (5.37)
                                                    m
                                          h = 10.67 (Q 3 ∕s
                                           f
                                          h = 10.67(0.0438∕100) 1.85 1,000∕(0.3048) 4.87 .
                                           f
                                           s = 2.17 m∕1,000 m.
                                      EXAMPLE 5.37 MATHEMATICAL AND GRAPHICAL BASIS OF THE PIPE FLOW DIAGRAM
                                      The pipe flow diagram (Fig. 5.16) establishes the numerical relationships between Q, v, d,and s for a value of C = 100. Conversion to
                                      other magnitudes of C is simple because both v and Q vary directly as C. Show the mathematical and graphical basis of this diagram.
                                      Solution:
                                                                                     s
                                          1. Written in logarithmic form, Eq. (5.36), Q  = 405Cd 2.63 0.54 ,is
                                                                          gpd
                                            (a) log Q  = 4.61 + 2.63 log d + 0.54 log s,or
                                                   gpd
                                            (b) log s =−8.54 − 4.87 log d + 1.85 log Q  .
                                                                            gpd
   159   160   161   162   163   164   165   166   167   168   169