Page 162 - Water Engineering Hydraulics, Distribution and Treatment
P. 162

140
                                                   Water Hydraulics, Transmission, and Appurtenances
                                          Chapter 5
                                                                r = A∕P = (4.2ft × 2.2ft)∕(2.2ft × 2 + 4.2ft) = 1.074 ft.
                                                                      w
                                                                                         √
                                                                              Q = Av = AC rs.
                                                                                      √
                                                                      21.0 = (4.2 × 2.2)(C) 1.074 × 0.00048.
                                                                                       √
                                                                      C = (21.0)∕(4.2 × 2.2) 1.074 × 0.00048
                                                                        = 100.
                                          Substitute C = 100, r = 1.074 ft, and s = 0.00048 into Eq. (5.24):
                                                                                              0.5
                                                            C = (41.65 + 0.00281∕s + 1.811∕n)∕[1 + (n∕r )(41.65 + 0.00281∕s)]
                                                                                               0.5
                                                   100 = (41.65 + 0.00281∕0.00048 + 1.811∕n)∕[1 + (n∕1.074 )(41.65 + 0.000281∕0.00048)].  (5.24)
                                          By the trial-and-error method, assuming n = 0.011, 0.013, 0.015, 0.017, and so on, n is found to be 0.015.
                                      Solution 2 (SI System):
                                                                                         √
                                                                               v = 0.552AC rs                                  (5.18b)
                                                          r = A∕P = (1.28 m × 0.67 m)∕(0.67 m × 2 + 1.28 m) = 0.327 m (1.074 ft).
                                                                w
                                                                                           √
                                                                            Q = Av = 0.552AC rs.
                                                                                         √
                                                                   0.59 = 0.552(1.28 × 0.67)(C) 0.327 × 0.00048.
                                                                                  C = 100.
                                      Substitute C = 100, r = 1.074, and s = 0.00048 into Eq. (5.24):
                                                                                              0.5
                                                            C = (41.65 + 0.00281∕s + 1.811∕n)∕[1 + (n∕r )(41.65 + 0.00281∕s)]   (5.24)
                                                                                               0.5
                                                   100 = (41.65 + 0.00281∕0.00048 + 1.811∕n)∕[1 + (n∕1.074 )(41.65 + 0.000281∕0.00048)].
                                          By the trial-and-error method, assuming n = 0.011, 0.013, 0.015, 0.017, and so on, n is found to be 0.015.



                                      EXAMPLE 5.34 OPEN CHANNEL FIELD INVESTIGATION—MANNING METHOD
                                                       3
                                                               3
                                      A water flow of 21.0 ft /s (0.59 m /s) was measured in a rectangular open channel 4.2 ft (1.28 m) wide with water flowing 2.2 ft
                                      (0.67 m) deep. Determine the roughness factor n for the channel lining, if the channel slope is 0.00048. Use the Manning’s method.
                                      Solution 1 (US Customary System):

                                                                                 1.486
                                                                             v =      (r) 0.67  (s) 0.5                         (5.25)
                                                                                   n
                                                                                    2
                                                                   A = 4.2 × 2.2 = 9.24 ft .
                                                                   r = A∕P = (9.24)∕(2.2ft × 2 + 4.2ft) = 1.074 ft.
                                                                         w
                                                                 0.5
                                         v = (1.486∕n)(1.074) 0.67 (0.00048) .
                                         Q = Av.
                                                                       0.5
                                         21.0 = 9.24[(1.486∕n)(1.074) 0.67 (0.00048) ].
                                                                   0.5
                                         n = 9.24[(1.486)(1.074) 0.67 (0.00048) ]∕21.0.
                                         n = 0.015.
   157   158   159   160   161   162   163   164   165   166   167