Page 142 - Wind Energy Handbook
P. 142

116                        AERODYNAMICS OF HORIZONTAL-AXIS WIND TURBINES

                                   U 1 (cos ª   a(1 þ F( ì)K(÷)sin ł))
                                     þ Ùra9cos ł sin ÷(1 þ sin ł sin ÷)
                      tan ö ¼                                                 (3:131)
                             (Ùr(1 þ a9 cos ÷(1 þ sin ł sin ÷)))

                                              ÷
                             þ U 1 cos(ł) a tan  (1 þ F( ì)K(÷)sin ł)   sin ª
                                              2
          where r is measured radially from the axis of rotor rotation.
            The angle of attack Æ is found from

                                           Æ ¼ ö   â                          (3:132)

          Lift and drag coefficients taken from two-dimensional experimental data, just as for
          the non-yawed case, are determined from the angle of attack calculation for each
          blade element (each combination of ì and ł).



          3.10.8 The blade element–momentum theory for a rotor in steady
                  yaw

          The forces on a blade element can be determined via Equations (3.131) and (3.132)
          for given values of the flow induction factors.
            The thrust force will be calculated using Equation (3.46) in Section 3.5.3, which is
          for a complete annular ring of radius r and radial thickness är.
                                           1    2
                        äL cos ö þ äD sin ö ¼ rW Nc(C l cos ö þ C d sin ö)är   (3:46)
                                           2

          For an elemental area of the annular ring swept out as the rotor turns through an
          angle äł the proportion of the force is

                                   1    2                      äł
                             äF b ¼ rW Nc(C l cos ö þ C d sin ö)är
                                   2                           2ð
          putting C x ¼ C l cos ö þ C d sin ö and

                                                Nc
                                           ó r ¼
                                                2ðr
          then

                                          1
                                     äF b ¼ rW ó r C x räräł                  (3:133)
                                               2
                                          2
          The values of C l and C d should really include unsteady effects because of the ever
          changing blade circulation with azimuth angle which will depend upon the level of
          the reduced frequency of the circulation fluctuation.
            If it is chosen to ignore drag, or use only that part of the drag attributable to
          pressure, then Equation (3.133) should be modified accordingly.
   137   138   139   140   141   142   143   144   145   146   147