Page 143 - Wind Energy Handbook
P. 143

THE AERODYNAMICS OF A WIND TURBINE IN STEADY YAW                       117


               The rate of change of momentum will use either Equation (3.105), Glauert’s
             theory, or Equation (3.111), the vortex cylinder theory; in both equations the flow
             induction factor a should be replaced by af to account for Prandtl tip loss.
               For Glauert’s theory

                                     1   2   p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
                               äF m ¼ rU 4af   1   af(2 cos ª   af)räłär        (3:134a)
                                         1
                                     2
             Or, for the vortex theory,

                             1   2               ÷           2  ÷
                       äF m ¼ rU 4af cos ª þ tan sin ª   af sec  räłär          (3:134b)
                                 1
                             2                   2            2
             The Equations (3.134) do not include the drop in pressure caused by wake rotation
             but to do this would require greater detail about wake rotation velocities from the
             vortex theory. The algebraic complexity of estimating the wake rotation velocities is
             great and even then fluctuation of bound circulation is ignored. The drop in
             pressure caused by wake rotation, however, is shown to be small in the non-yawed
             case and so it is assumed that it can safely be ignored in the yawed case.
               The moment of the blade element force about the wake axis is

                                    1    2                          äł
                              äM b ¼ rW Nc(cos ł sin ÷C x þ cos ÷C y rär
                                    2                               2ð

             where

                                        C y ¼ C l sin ö   C d cos ö

             therefore

                                    1   2                         2
                             äM b ¼ rW ó r (cos ł sin ÷C x þ cos ÷C y )r äräł    (3:135)
                                    2

               The rate of change of angular momentum is the mass flow rate through an
             elemental area of the disc times the tangential velocity times radius.

                                                                   2
                                 äM m ¼ rU 1 (cos ª   af)räłär2a9 fÙr-

             where
                                       2
                                                       2
                                           2
                                                            2
                                               2
                                     r- ¼ r (cos ł þ cos ÷ sin ł)
             therefore
                           1   2                    2       2    2   2
                    äM m ¼ rU ºì4a9f(cos ª   af)(cos ł þ cos ÷ sin ł)r äräł      (3:136)
                               1
                           2
   138   139   140   141   142   143   144   145   146   147   148