Page 144 - Wind Energy Handbook
P. 144

118                        AERODYNAMICS OF HORIZONTAL-AXIS WIND TURBINES


            The momentum theory, as developed, applies only to the whole rotor disc where
          the flow induction factor a is the average value for the disc. However, it may be
          argued that it is better to apply the momentum equations to an annular ring, as in
          the non-yawed case, to determine a distribution of the flow induction factors
          varying with radius, reflecting radial variation of circulation. Certainly, for the
          angular momentum case the tangential flow factor a9 will not vary with azimuth
          position because it is generated by the root vortex and although, in fact, the axial
          flow factor a does vary with azimuth angle it is consistent to use an annular average
          for this factor as well.
            To find an average for an annular ring the elemental values of force and moment
          must be integrated around the ring.
            For the axial momentum case, taking the vortex method as an example,

                        ð 2ð
                           1   2               ÷            2  ÷
                             rU 4af cos ª þ tan  sin ª   af sec  rär dł
                               1
                           2                   2              2
                         0
                                       ð 2ð
                                               2
                                     ¼    1  rW ó r C x rär dł
                                        0  2


          Therefore

                                                            ð
                                      ÷              ÷       2ð  W 2
                       8ðaf cos ª þ tan  sin ª   af sec 2  ¼ ó r   C x dł     (3:137)
                                      2              2       0 U 2 1


          The resultant velocity W and the normal force coefficient C x are functions of ł. And
          for the angular momentum case

                      ð 2ð
                         1   2
                                                               2
                                                                   2
                                                          2
                                                  2
                          rU ºì4a9 f(cos ª   af)(cos ł þ cos ÷ sin ł)r är dł
                         2   1
                       0
                             ð 2ð
                                     2
                                                              2
                           ¼    1  rW ó r (cos ł sin ÷C x þ cos ÷C y )r är dł
                              0  2
          which reduces to
                                             ð 2ð  2
                                     2          W
             4a9 f(cos ª   af)ºìð(1 þ cos ÷) ¼ ó r  2  (cos ł sin ÷C x þ cos ÷C y )dł  (3:138)
                                              0 U 1

          The non-dimensionalized resultant velocity relative to a blade element is given by
   139   140   141   142   143   144   145   146   147   148   149