Page 103 - Characterization and Properties of Petroleum Fractions - M.R. Riazi
P. 103
P2: —/—
QC: —/—
P1: KVU/—
T1: IML
August 16, 2007
AT029-Manual-v7.cls
AT029-02
16:6
AT029-Manual
2. CHARACTERIZATION AND PROPERTIES OF PURE HYDROCARBONS 83
TABLE 2.16—Recommended methods for the prediction of the basic properties of pure hydrocarbons
a
and narrow boiling range petroleum fractions .
Property Range of M Method Equation
M 70–700 API [2] 2.51
70–300 Riazi–Dabubert [28] 2.50
200–800 API [2] 2.52(b)
70–700 Twu [30] 2.89–2.92(c)
T c 70–300 API [2] 2.65
70–700 Lee-Kesler [12] 2.69
70–700 Extended API [65] 2.67
70–800 Riazi–Sahhaf [31] 2.42 d
<70 e Riazi et al. [37] 2.47 e
P c 70–300 API [2] 2.66
70–700 Lee–Kesler [12] or Twu [30] 2.70
70–700 Extended API [65] 2.68
70–300 Riazi–Sahhaf [31] 2.42 d
300–800 Pan–Firoozabadi–Fotland [63] 2.43 d
<70 e Riazi et al. [37] 2.47 e
V c 70–350 Riazi–Daubert [28] 2.98
300–700 Extended R–D [65] 2.99
70–700 Riazi–Sahhaf [31] 2.42 d
<70 e Riazi et al. [37] 2.47 e
Z c 70–700 By definition of Z c 2.8
ω 70–300 Lee–Kesler [27] 2.105
300–700 Korsten [77] 2.109
70–700 Riazi–Sahhaf [31] 2.42 f
300–700 Pan–Firoozabadi–Fotland [63] 2.44 g
T b 70–300 Riazi–Daubert [29] 2.56
300–700 Extended R–D [65] 2.57
70–700 Riazi–Sahhaf [31] 2.42 d
SG All range Denis et al. [8] 2.112
70–300 Riazi–Daubert [29] 2.59
70–700 Extended R–D [65] 2.60
200–800 API [2] 2.61 d
I 70–300 Riazi–Daubert [29] 2.116
300–700 Extended R–D [65] 2.117
70–700 Riazi–Sahhaf [31] 2.42 d
d All range Denis et al. [8] 2.111
70–350 Riazi–Daubert [28] 2.113
T M 70–700 Pan–Firoozabadi–Fotland [63] 2.126 h --`,```,`,``````,`,````,```,,-`-`,,`,,`,`,,`---
Riazi–Sahhaf [31] 2.124 and 2.125 i
Methods recommended for pure homologous hydrocarbons (designated by d–i) are also recommended for the pseu-
docomponent method discussed in Chapter 3 for petroleum fractions. The 300 boundary is approximate and methods
recommended for the range of 70–300 may be used safely up to molecular weight of 350 and similarly methods rec-
ommended for the range 300–700 may be used for molecular weight as low as 250.
a For narrow boiling range fractions a midpoint distillation temperature can be used as T b .
b Only when T b is not available.
c Recommended for pure hydrocarbons from all types.
d Recommended for pure homologous hydrocarbon groups.
e For compounds and fractions with molecular weight less than 70 and those containing nonhydrocarbon compounds
(H 2 S,CO 2 ,N 2 , etc.) Eq. (2.47) is recommended.
f Equation (2.42) is applicable to acentric factor of n-alkylbenzenes up to molecular weight of 300.
g Equation (2.44) is applicable to acentric factor of aromatics for 300 < M < 800 and for M > 800, ω = 2 should be
used.
h For pure hydrocarbons from n-alkanes family.
i For pure hydrocarbons from n-alkylcylopentanes (naphthenes) and n-alkylbenzenes (aromatics) families.
2.11 PROBLEMS 2.2. For heavy and complex hydrocarbons or petroleum frac-
tions, basic properties can be best determined from
2.1. For light hydrocarbons and narrow boiling range frac- three parameters. Determine the best three parameters
tions usually a few measured parameters are avail- for each of the following cases:
able. For each one of the following cases determine a. T b , M, SG, ν 38(100)
the best two parameters from the set of available b. CH, ν 38(100) ,n 20 , ν 99(210) , API Gravity
data that are suitable to be used for property predi- c. CH, n 20 , SG, M, ν 99(210)
ctions: d. T b , M,n 20 , CH, K W
a. T b , M,SG 2.3. You wish to develop a predictive correlation for predic-
tion of molar volume, V T , in terms of ν 38(100) , SG, and
b. CH, ν 38(100) ,n 20
c. CH, n 20 ,SG temperature T. How do you propose a simple relation
d. T b , M,n 20 ,CH with temperature dependent parameters for estimation
e. ν 38(100) , T b , CH, M of molar volume?
Copyright ASTM International
Provided by IHS Markit under license with ASTM Licensee=International Dealers Demo/2222333001, User=Anggiansah, Erick
No reproduction or networking permitted without license from IHS Not for Resale, 08/26/2021 21:56:35 MDT