Page 103 - Characterization and Properties of Petroleum Fractions - M.R. Riazi
P. 103

P2: —/—
                       QC: —/—
  P1: KVU/—
                                 T1: IML
                                           August 16, 2007
                        AT029-Manual-v7.cls
  AT029-02
                                                          16:6
            AT029-Manual
                                           2. CHARACTERIZATION AND PROPERTIES OF PURE HYDROCARBONS 83
                           TABLE 2.16—Recommended methods for the prediction of the basic properties of pure hydrocarbons
                                                                               a
                                               and narrow boiling range petroleum fractions .
                           Property      Range of M               Method                    Equation
                           M              70–700         API [2]                             2.51
                                          70–300         Riazi–Dabubert [28]                 2.50
                                          200–800        API [2]                            2.52(b)
                                          70–700         Twu [30]                         2.89–2.92(c)
                           T c            70–300         API [2]                             2.65
                                          70–700         Lee-Kesler [12]                     2.69
                                          70–700         Extended API [65]                   2.67
                                          70–800         Riazi–Sahhaf [31]                   2.42 d
                                           <70 e         Riazi et al. [37]                   2.47 e
                           P c            70–300         API [2]                             2.66
                                          70–700         Lee–Kesler [12] or Twu [30]         2.70
                                          70–700         Extended API [65]                   2.68
                                          70–300         Riazi–Sahhaf [31]                   2.42 d
                                          300–800        Pan–Firoozabadi–Fotland [63]        2.43 d
                                           <70 e         Riazi et al. [37]                   2.47 e
                           V c            70–350         Riazi–Daubert [28]                  2.98
                                          300–700        Extended R–D [65]                   2.99
                                          70–700         Riazi–Sahhaf [31]                   2.42 d
                                           <70 e         Riazi et al. [37]                   2.47 e
                           Z c            70–700         By definition of Z c                  2.8
                           ω              70–300         Lee–Kesler [27]                     2.105
                                          300–700        Korsten [77]                        2.109
                                          70–700         Riazi–Sahhaf [31]                   2.42 f
                                          300–700        Pan–Firoozabadi–Fotland [63]        2.44 g
                           T b            70–300         Riazi–Daubert [29]                  2.56
                                          300–700        Extended R–D [65]                   2.57
                                          70–700         Riazi–Sahhaf [31]                   2.42 d
                           SG             All range      Denis et al. [8]                    2.112
                                          70–300         Riazi–Daubert [29]                  2.59
                                          70–700         Extended R–D [65]                   2.60
                                          200–800        API [2]                             2.61 d
                           I              70–300         Riazi–Daubert [29]                  2.116
                                          300–700        Extended R–D [65]                   2.117
                                          70–700         Riazi–Sahhaf [31]                   2.42 d
                           d              All range      Denis et al. [8]                    2.111
                                          70–350         Riazi–Daubert [28]                  2.113
                           T M            70–700         Pan–Firoozabadi–Fotland [63]       2.126 h                  --`,```,`,``````,`,````,```,,-`-`,,`,,`,`,,`---
                                                         Riazi–Sahhaf [31]               2.124 and 2.125 i
                           Methods recommended for pure homologous hydrocarbons (designated by d–i) are also recommended for the pseu-
                           docomponent method discussed in Chapter 3 for petroleum fractions. The 300 boundary is approximate and methods
                           recommended for the range of 70–300 may be used safely up to molecular weight of 350 and similarly methods rec-
                           ommended for the range 300–700 may be used for molecular weight as low as 250.
                           a For narrow boiling range fractions a midpoint distillation temperature can be used as T b .
                           b Only when T b is not available.
                           c Recommended for pure hydrocarbons from all types.
                           d Recommended for pure homologous hydrocarbon groups.
                           e For compounds and fractions with molecular weight less than 70 and those containing nonhydrocarbon compounds
                           (H 2 S,CO 2 ,N 2 , etc.) Eq. (2.47) is recommended.
                           f  Equation (2.42) is applicable to acentric factor of n-alkylbenzenes up to molecular weight of 300.
                           g Equation (2.44) is applicable to acentric factor of aromatics for 300 < M < 800 and for M > 800, ω = 2 should be
                           used.
                           h For pure hydrocarbons from n-alkanes family.
                           i For pure hydrocarbons from n-alkylcylopentanes (naphthenes) and n-alkylbenzenes (aromatics) families.
            2.11 PROBLEMS                                          2.2. For heavy and complex hydrocarbons or petroleum frac-
                                                                      tions, basic properties can be best determined from
             2.1. For light hydrocarbons and narrow boiling range frac-  three parameters. Determine the best three parameters
                tions usually a few measured parameters are avail-    for each of the following cases:
                able. For each one of the following cases determine   a. T b , M, SG, ν 38(100)
                the best two parameters from the set of available     b. CH, ν 38(100) ,n 20 , ν 99(210) , API Gravity
                data that are suitable to be used for property predi-  c. CH, n 20 , SG, M, ν 99(210)
                ctions:                                               d. T b , M,n 20 , CH, K W
                a. T b , M,SG                                      2.3. You wish to develop a predictive correlation for predic-
                                                                      tion of molar volume, V T , in terms of ν 38(100) , SG, and
                b. CH, ν 38(100) ,n 20
                c. CH, n 20 ,SG                                       temperature T. How do you propose a simple relation
                d. T b , M,n 20 ,CH                                   with temperature dependent parameters for estimation
                e. ν 38(100) , T b , CH, M                            of molar volume?















   Copyright ASTM International
   Provided by IHS Markit under license with ASTM             Licensee=International Dealers Demo/2222333001, User=Anggiansah, Erick
   No reproduction or networking permitted without license from IHS  Not for Resale, 08/26/2021 21:56:35 MDT
   98   99   100   101   102   103   104   105   106   107   108