Page 152 - Petroleum Production Engineering, A Computer-Assisted Approach
P. 152

Guo, Boyun / Computer Assited Petroleum Production Engg 0750682701_chap11 Final Proof page 147  3.1.2007 8:54pm Compositor Name: SJoearun




                                                                              TRANSPORTATION SYSTEMS  11/147
                                    z
                       of the z’s with   z ¼ (z 1 þ z 2 )=2, where z 1 and z 2 are  f M ¼ 0:01223
                       obtained at p 1 and p 2 , respectively. On the other hand,  r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
                                                                                          2
                       should p 1 and p 2 lie in the range where z is not linear with  3:23(520)  1  (600   200 )(12:09) 5
                                                                                               2
                       pressure (double-hatched lines), the proper average would  q h ¼  14:7  0:01223 (0:7)(540)(0:9188)(200)
                       result from determining the area under the z-curve and
                       dividing it by the difference in pressure:     ¼ 1,148,450 scfh
                           Ð
                            p 2
                             zdp                                 Second trial:
                       z   z ¼  p 1  ,                   (11:102)
                          ( p 1   p 2 )                                        q h ¼ 1,148,450 cfh
                       where the numerator can be evaluated numerically. Also, z ¯  0:48(1,148,450)(0:7)
                       can be evaluated at an average pressure given by  N Re ¼           ¼ 3,224,234
                                                                              (0:0099)(12:09)
                             3
                          2 p   p 3
                         p p ¼  1  2  :                  (11:103)     1                      21:25
                             2
                          3 p   p 2 2                                p ffiffiffiffiffiffi ¼ 1:14   2 log 0:00005 þ
                             1
                                                                                           (3,224,234) 0:9
                                                                       f M
                       Regarding the assumption of horizontal pipeline, in actual
                       practice, transmission lines seldom, if ever, are horizontal,  f M ¼ 0:01145
                       so that factors are needed in Eq. (11.101) to compensate
                       for changes in elevation. With the trend to higher operat-  r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
                                                                                                     5
                                                                                          2
                                                                                               2
                       ing pressures in transmission lines, the need for these  q h ¼  3:23(520)  1  ð 600   200 Þ(12:09)
                       factors is greater than is generally realized. This issue of  14:7  0:01145 (0:7)(540)(0:9188)(200)
                       correction for change in elevation is addressed in the next
                       section.                                       ¼ 1,186,759 scfh
                         If the pipeline is long enough, the changes in the kinetic-  Third trial:
                       energy term can be neglected. The assumption is justified
                       for work with commercial transmission lines.           q h ¼ 1,186,759 scfh
                                                                            0:48(1,186,759)(0:7)
                       Example Problem 11.5 For the following data given for a  N Re ¼    ¼ 3,331,786
                                                      3
                       horizontal pipeline, predict gas flow rate in ft =hr through  (0:0099)(12:09)
                       the pipeline. Solve the problem using Eq. (11.101) with the
                       trial-and-error method for friction factor and the  p 1 ffiffiffiffiffiffi ¼ 1:14   2 log 0:00005 þ  21:25
                       Weymouth equation without the Reynolds number–  f M                 (3,331,786) 0:9
                       dependent friction factor:
                                                                                f M ¼ 0:01143
                            d ¼ 12.09 in.                                            s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
                            L ¼ 200 mi                                 3:23(520) r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi  ð 600   200 Þ(12:09) 5
                                                                                          2
                                                                                               2
                                                                                  1
                            e ¼ 0.0006 in.                          q h ¼
                            T ¼ 80 8F                                    14:7   0:01143 (0:7)(540)(0:9188)(200)
                           g g ¼ 0:70                                 ¼ 1,187,962 scfh,

                           T b ¼ 520 R
                            p b ¼ 14:7 psia                      which is close to the assumed 1,186,759 scfh.
                            p 1 ¼ 600 psia
                            p 2 ¼ 200 psia                       B. Using the Weymouth equation:
                                                                                  s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
                       Solution The average pressure is                   18:062(520)  (600   200 )(12:09) 16=3
                                                                                      2
                                                                                           2
                                                                      q h ¼
                                                                            14:7    (0:7)(540)(0:9188)(200)
                                   p p ¼ (200 þ 600)=2 ¼ 400 psia:
                                                                        ¼ 1,076,035 scfh
                       With p ¯ ¼ 400 psia, T ¼ 540 8R and g g ¼ 0:70, Brill-Beggs-
                       Z.xls gives                               Problems similar to this one can be quickly solved with the
                                                                 spreadsheet program PipeCapacity.xls.
                                       z   z ¼ 0:9188:
                       With p ¯ ¼ 400 psia, T ¼ 540 8R and g g ¼ 0:70, Carr-  11.4.1.2.2 Weymouth Equation for Non-horizontal
                       Kobayashi-BurrowsViscosity.xls gives      Flow Gas transmission pipelines are often nonhorizontal.
                                                                 Account should be taken of substantial pipeline elevation
                                                                 changes. Considering gas flow from point 1 to point 2 in a
                                      m ¼ 0:0099 cp:
                                                                 nonhorizontal pipe, the first law of thermal dynamics gives
                       Relative roughness:
                                                                 ð 2        ð 2
                                                                       g      f M u 2
                                                                  vdP þ  Dz þ    dL ¼ 0:           (11:104)
                                 e D ¼ 0:0006=12:09 ¼ 0:00005                2g c D
                                                                       g c
                                                                 1          1
                       A. Trial-and-error calculation:           Based on the pressure gradient due to the weight of gas column,
                       First trial:                              dP   r g
                                                                   ¼    ,                          (11:105)
                                     q h ¼ 500,000 scfh          dz  144
                                                                 and real gas law, r g ¼  p(MW) a  ¼  29g g p , Weymouth (1912)
                                   0:48(500,000)(0:7)                              zRT  zRT
                              N Re ¼            ¼ 1,403,733      developed the following equation:
                                    (0:0099)(12:09)                      s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
                                                                             2
                                                                                s 2
                                                                 q h ¼  3:23T b  ( p   e p )d  5 ,  (11:106)
                                                                             1
                                                                                 2
                            1                      21:25                    f M g g T

                                                                                TzzL
                           p ffiffiffiffiffiffi ¼ 1:14   2 log 0:00005 þ          p b
                                                 (1,403,733) 0:9
                             f M
                                                                 where
   147   148   149   150   151   152   153   154   155   156   157