Page 171 - Petroleum Production Engineering, A Computer-Assisted Approach
P. 171
Guo, Boyun / Computer Assited Petroleum Production Engg 0750682701_chap12 Final Proof page 167 4.1.2007 2:43pm Compositor Name: SJoearun
SUCKER ROD PUMPING 12/167
Table 12.1 Conventional Pumping Unit API Geometry Dimensions (Continued)
API Unit designation A (in.) C (in.) I (in.) P (in.) H (in.) G (in.) R1, R2, R3 (in.) C s (lb) Torque factor
C-114D-133-54 72 64 64 74.5 116 41 24, 20, 16 330 26.45
C-80D-133-54 72 64 64 74.5 116 41 24, 20, 16 330 26.45
C-80D-119-54 72 64 64 74.5 116 41 24, 20, 16 330 26.45
C-P57D-76-54 64 51 51 64 103 39 21, 16, 11 105 25.8
C-P57D-89-54 64 51 51 64 103 39 21, 16, 11 105 25.8
C-80D-133-48 64 64 64 74.5 116 41 24, 20, 16 440 23.51
C-80D-109-48 64 56.05 56 65.63 105 37 21, 16, 11 320 23.3
C-57D-109-48 64 56.05 56 65.63 105 37 21, 16, 11 320 23.3
C-57D-95-48 64 56.05 56 65.63 105 37 21, 16, 11 320 23.3
C-P57D-109-48 57 51 51 64 103 39 21, 16, 11 180 22.98
C-P57D-95-48 57 51 51 64 103 39 21, 16, 11 180 22.98
C-40D-76-48 64 48.17 48 57.5 98.5 37 18, 14, 10 0 23.1
C-P40D-76-48 61 47 47 56 95 39 18, 14, 10 190 22.92
C-P57D-89-42 51 51 51 64 103 39 21, 16, 11 280 20.56
C-P57D-76-42 51 51 51 64 103 39 21, 16, 11 280 20.56
C-P40D-89-42 53 47 47 56 95 39 18, 14, 10 280 19.92
C-P40D-76-42 53 47 47 56 95 39 18, 14, 10 280 19.92
C-57D-89-42 56 48.17 48 57.5 98.5 37 18, 14, 10 150 20.27
C-57D-76-42 56 48.17 48 57.5 98.5 37 18, 14, 10 150 20.27
C-40D-89-42 56 48.17 48 57.5 98.5 37 18, 14, 10 150 20.27
C-40D-76-42 56 48.17 48 57.5 98.5 37 18, 14, 10 150 20.27
C-40D-89-36 48 48.17 48 57.5 98.5 37 18, 14, 10 275 17.37
C-P40D-89-36 47 47 47 56 95 39 18, 14, 10 375 17.66
C-25D-67-36 48 48.17 48 57.5 98.5 37 18, 14, 10 275 17.37
C-25D-56-36 48 48.17 48 57.5 98.5 37 18, 14, 10 275 17.37
C-25D-67-30 45 36.22 36 49.5 84.5 31 12, 8 150 14.53
C-25D-53-30 45 36.22 36 49.5 84.5 31 12, 9 150 14.53
c
2
d x a max ¼ v c(1 þ ): (12:1)
2
a ¼ : h
dt 2
It also appears that the minimum value of acceleration is
Carrying out the differentiation for acceleration, it is
c
2
found that the maximum acceleration occurs when vt is a min ¼ v c(1 ): (12:2)
equal to zero (or an even multiple of p radians) and that h
this maximum value is If N is the number of pumping strokes per minute, then
C
x
B
h
Pitman arm
A
wt c Crank arm
O
w
AB = length of pitman arm (h)
OA = length of crank arm (c)
OB = distance from center O to
pitman arm-walking beam connection at B
Figure 12.7 Approximate motion of connection point between pitman arm and walking beam (Nind, 1964).