Page 209 - A Comprehensive Guide to Solar Energy Systems
P. 209
Chapter 9 • Crystalline Silicon Solar Cell and Module Technology 211
[9] Chunduri SK: Diamond wire—the die has been cast, Photon Int 5:258–263, 2011.
[10] Fossum JG: Physical operations on back-surface field solar cells, IEEE Trans Electron Devices 24:322–
325, 1977.
[11] Braun S, hahn G, nissler r, Pönisch Ch, habermann D: The multi-busbar design: an overview, Energy
Procedia 43:86–92, 2013.
[12] Koynov S, Brandt mS, Stutzmann m: Black multi-crystalline silicon solar cells, Phys Status Solidi (RRL)
1(2):r53–r55, 2007.
[13] Firat eS. novel metal assisted etching technique for enhanced light management in black crystalline
Si solar cells. Thesis, middle east Technical University; 2006.
[14] Joos W. Overview and latest technologies for texturing of multicrystalline silicon. Available at: www.
itrpv.net/.cm4all/iproc.php/04-2017_06_01_ITrPV%20roadmapmeeting%20-%20Intersolar%20eu-
rope_final_rCT.pdf?cdp=a
[15] Fraas l, Partainning l, editors: Solar cells and their applications, 2nd ed., Singapore, 2010, John Wiley
& Sons.
[16] Kaplanis S, Kaplani e, editors: Renewable energy systems: theory, innovations, and intelligent applica-
tions, new york, 2013, nova Science Publishers, Inc.
[17] hahn G. Status of selective emitter technology. In: Proceedings of 25th european photovoltaic solar
energy conference and exhibition, Valencia, Spain; 2010. p. 1091–6.
[18] lennon A, yao y, Wenham S: evolution of metal plating for silicon solar cell metallisation, Prog Photo-
volt Res Appl 21:1454–1468, 2013.
[19] Clement F, Thaidigsmann B, hönig r, Fellmeth T, Spribille A, lohmüller e, et al. Pilot-line processing
oh highly-efficient mWT silicon solar cells. In: Proceedings of 25th european photovoltaic solar en-
ergy conference and exhibition, Valencia, Spain; 2010. p. 1097–1101.
[20] Wang X, Wu J: The road to industrializing PerC solar cells, Photovolt Int 29:48–52, 2015.
[21] Zhao J, Wang A, Green mA. 24% efficient perl structure silicon solar cells. In: Proceedings of Ieee
photovoltaic specialists conference, vol. 1; 1990. p. 333–5.
[22] Cotter Je, Guo Jh, Cousins PJ, Abbott mD, Chen FW, Fisher KC: P-type versus n-type silicon wafers:
prospects for high-efficiency commercial silicon solar cells, IEEE Trans Electron Devices 53:1893–1901,
2006.
[23] Burgers Ar, naber rCG, Carr AJ, Barton PC, Geerligs lJ, Jingfenget X, et al. 19% efficient n-type Si
solar cells made in pilot production. In: Proceedings of 25th european photovoltaic solar energy con-
ference and exhibition, Valencia, Spain; 2010. p. 1106–1109.
[24] Schindler F, michl B, Krenckel P, riepe S, Feldmann F, Benick J, et al: efficiency potential of p- and n-
type high performance multicrystalline silicon, Energy Procedia 77:633–638, 2015.
[25] Cai W, yuan S, Sheng y, Duan W, Wang Z, Chen y, et al: 22.2% efficiency n-type PerT solar cell, Energy
Procedia 92:399–403, 2016.
[26] Glunz SW, Feldmann F, richter A, Bivour m, reichel C, Steinkemper h, et al. The irresistible charm of
a simple current flow pattern—25% with a solar cell featuring a full-area back contact. In: Proceedings
of the 31st european photovoltaic solar energy conference and exhibition, hamburg; 2015. p. 259–63.
[27] Cuevas A, luege A, eguren J, Del Alamo J: 50% more output power from an albedo collecting flat panel
using bifacial solar cells, Sol Energy 29:419–420, 1982.
[28] Dullweber T, Kranz C, Peibst r, Baumann U, hannebauer h, Fülle A, et al. The PerC+ Cell: a 21% ef-
ficient industrial bifacial PerC solar cell. In: Proceedings of 31st european photovoltaic solar energy
conference, hamburg, Germany; 2015. p. 341–50.
[29] Wöhrle n, lohmüller e, mittag m, moldovan A, Baliozian P, Fellmeth T, et al: Solar cell demand for
bifacial and singulated-cell module architectures, Photovolt Int 36:48–62, 2017.