Page 209 - A Comprehensive Guide to Solar Energy Systems
P. 209

Chapter 9 • Crystalline Silicon Solar Cell and Module Technology   211



                   [9]  Chunduri SK: Diamond wire—the die has been cast, Photon Int 5:258–263, 2011.
                   [10]  Fossum JG: Physical operations on back-surface field solar cells, IEEE Trans Electron Devices 24:322–
                    325, 1977.
                   [11]  Braun S, hahn G, nissler r, Pönisch Ch, habermann D: The multi-busbar design: an overview, Energy
                    Procedia 43:86–92, 2013.
                   [12]  Koynov S, Brandt mS, Stutzmann m: Black multi-crystalline silicon solar cells, Phys Status Solidi (RRL)
                    1(2):r53–r55, 2007.
                   [13]  Firat eS. novel metal assisted etching technique for enhanced light management in black crystalline
                    Si solar cells. Thesis, middle east Technical University; 2006.
                   [14]  Joos W. Overview and latest technologies for texturing of multicrystalline silicon. Available at: www.
                    itrpv.net/.cm4all/iproc.php/04-2017_06_01_ITrPV%20roadmapmeeting%20-%20Intersolar%20eu-
                    rope_final_rCT.pdf?cdp=a
                   [15]  Fraas l, Partainning l, editors: Solar cells and their applications, 2nd ed., Singapore, 2010, John Wiley
                    & Sons.
                   [16]  Kaplanis S, Kaplani e, editors: Renewable energy systems: theory, innovations, and intelligent applica-
                    tions, new york, 2013, nova Science Publishers, Inc.
                   [17]  hahn G. Status of selective emitter technology. In: Proceedings of 25th european photovoltaic solar
                    energy conference and exhibition, Valencia, Spain; 2010. p. 1091–6.
                   [18]  lennon A, yao y, Wenham S: evolution of metal plating for silicon solar cell metallisation, Prog Photo-
                    volt Res Appl 21:1454–1468, 2013.
                   [19]  Clement F, Thaidigsmann B, hönig r, Fellmeth T, Spribille A, lohmüller e, et al. Pilot-line processing
                    oh highly-efficient mWT silicon solar cells. In: Proceedings of 25th european photovoltaic solar en-
                    ergy conference and exhibition, Valencia, Spain; 2010. p. 1097–1101.
                   [20]  Wang X, Wu J: The road to industrializing PerC solar cells, Photovolt Int 29:48–52, 2015.
                   [21]  Zhao J, Wang A, Green mA. 24% efficient perl structure silicon solar cells. In: Proceedings of Ieee
                    photovoltaic specialists conference, vol. 1; 1990. p. 333–5.
                   [22]  Cotter Je, Guo Jh, Cousins PJ, Abbott mD, Chen FW, Fisher KC: P-type versus n-type silicon wafers:
                    prospects for high-efficiency commercial silicon solar cells, IEEE Trans Electron Devices 53:1893–1901,
                    2006.
                   [23]  Burgers Ar, naber rCG, Carr AJ, Barton PC, Geerligs lJ, Jingfenget X, et al. 19% efficient n-type Si
                    solar cells made in pilot production. In: Proceedings of 25th european photovoltaic solar energy con-
                    ference and exhibition, Valencia, Spain; 2010. p. 1106–1109.
                   [24]  Schindler F, michl B, Krenckel P, riepe S, Feldmann F, Benick J, et al: efficiency potential of p- and n-
                    type high performance multicrystalline silicon, Energy Procedia 77:633–638, 2015.
                   [25]  Cai W, yuan S, Sheng y, Duan W, Wang Z, Chen y, et al: 22.2% efficiency n-type PerT solar cell, Energy
                    Procedia 92:399–403, 2016.
                   [26]  Glunz SW, Feldmann F, richter A, Bivour m, reichel C, Steinkemper h, et al. The irresistible charm of
                    a simple current flow pattern—25% with a solar cell featuring a full-area back contact. In: Proceedings
                    of the 31st european photovoltaic solar energy conference and exhibition, hamburg; 2015. p. 259–63.
                   [27]  Cuevas A, luege A, eguren J, Del Alamo J: 50% more output power from an albedo collecting flat panel
                    using bifacial solar cells, Sol Energy 29:419–420, 1982.
                   [28]  Dullweber T, Kranz C, Peibst r, Baumann U, hannebauer h, Fülle A, et al. The PerC+ Cell: a 21% ef-
                    ficient industrial bifacial PerC solar cell. In: Proceedings of 31st european photovoltaic solar energy
                    conference, hamburg, Germany; 2015. p. 341–50.
                   [29]  Wöhrle n, lohmüller e, mittag m, moldovan A, Baliozian P, Fellmeth T, et al: Solar cell demand for
                    bifacial and singulated-cell module architectures, Photovolt Int 36:48–62, 2017.
   204   205   206   207   208   209   210   211   212   213   214