Page 210 - A Comprehensive Guide to Solar Energy Systems
P. 210
212 A COmPrehenSIVe GUIDe TO SOlAr enerGy SySTemS
[30] Schwartz rJ, lammert mD. Silicon solar cells for high concentration applications. In: Proceedings of
the Ieee international electron devices meeting, Washington, DC; 1975. p. 350–2.
[31] Goodrich A, hacke P, Wang Q, Sopori B, margolis r, James Tl, et al: A wafer-based monocrystalline
silicon photovoltaics road map: utilizing known technology improvement opportunities for further
reductions in manufacturing cost, Sol Energy Mater Sol Cells 114:110–135, 2013.
[32] Tanaka m, Taguchi m, matsuyama T, Sawada T, Tsuda S, nakano S, et al: Development of new a-Si/c-
Si heterojunction solar cells: ACJ-hIT (artificially constructed junction/heterojunction with intrinsic
thin-layer), Jpn J Appl Phys 31:3518–3522, 1992.
[33] Sakata h, Tsunomura y, Inoue h, Taira S, Baba T, Kanno h, et al. r&D progress of next-generation
very thin hITTm solar cells. In: Proceedings of 25th european photovoltaic solar energy conference,
Valencia, Spain; 2010. p. 1102–4.
[34] Faes A, Badel n, Kiaee m, Despeisse m, levrat J, Champliaud J, et al. SmartWire Solar Cell Intercon-
nection Technology. Available at: http://www.metallizationworkshop.info/fileadmin/metallization-
workshop/Faes_2014metallizationWorkshop_SmartWire_Faes-CSem-v2.pdf
[35] Taguchi m, yano A, Tohoda S, matsuyama K, nakamura y, nishiwaki T, et al: 24.7% record efficiency
hIT solar cell on thin silicon wafer, IEEE J Photovolt 4(1):96–99, 2014.
[36] yoshikawa K, Kawasaki h, yoshida W, Irie T, Konishi K, nakano K, Uzu h, et al: Silicon heterojunction
solar cell with interdigitated back contacts for a photoconversion efficiency over 26%, Nat Energy
2:17032, 2017.
[37] loper P, niesen B, moon SJ, martin de nicolas S, holovský J, remeš Z, et al: Organic-inorganic halide
perovskites: perspectives for silicon-based tandem solar cells, IEEE J Photovolt 4:1545–1551, 2014.
[38] miyano K, yanagida m, Tripathi n, Shirai y: Simple characterization of electronic processes in
perovskite photovoltaic cells, Appl Phys Lett 106:093903, 2015.
[39] Peike C, hädrich I, Weiß KA, Dürr I: Overview of PV module encapsulation materials, Photovolt Int
19:85–92, 2013.
[40] Gong h, Wang G: reliability and durability impact of high UV transmission eVA for PV modules, Pho-
tovolt Int 29:101–106, 2015.
[41] Geretschläger KJ, Wallner Gm, Fischer J: Structure and basic properties of photovoltaic module back-
sheet films, Sol Energy Mater Sol Cells 144:451–456, 2016.
[42] Forniés e, Silva JP: Cell-to-module losses in standard crystalline PV modules—an industrial approach,
Photovolt Int 29:91–100, 2015.
[43] Söderström T, Papet P, yao y, Ufheil J. SmartWire Connection Technology. Available at: https://www.
meyerburger.com/user_upload/dashboard_news_bundle/376409e022f7d2ae6f6e29318f8055410774
c7fd.pdf
[44] Peike C, hülsmann P, Bluml m, Schmid P, Weiß K-A, Kohl m: Impact of permeation properties and
backsheet-encapsulant interactions on the reliability of PV modules, ISRN Renew Energy, 2012.doi:
10.5402/2012/459731, Article ID 459731.
[45] Köntges m, Kurtz S, Packard C, Jahn U, Berger KA, Kato K, et al. review of failures of photovoltaic
modules. external final report IeA-PVPS. Available at: http://www.iea-pvps.org/fileadmin/dam/
intranet/exCo/IeA-PVPS_T13-01_2014_review_of_Failures_of_Photovoltaic_modules_Final.pdf; 2014.
[46] Burger B, Kieferet K, Kost C, nold S, Philipps S, Preu r, et al. Photovoltaics report. Available at: www.
ise.fraunhofer.de; 2017.
[47] Benda V: Photovoltaics towards terawatts—progress in photovoltaic cells and modules, IET Power
Electron 8:2343–2351, 2015.