Page 355 - A Comprehensive Guide to Solar Energy Systems
P. 355

360  A COmPreHenSIVe GuIde TO SOLAr enerGy SySTemS



                [7]  Hand m, Baldwin S, demeo e, reilly J, mai T, Arent d, et al. renewable electricity futures study. nreL
                 TP-6A20-52409; 2012.
                [8]  rastler d. electricity energy storage technology options: a white paper primer on applications, costs,
                 and benefits. Technical report. Palo Alto: electric Power research Institute; 2010.
                [9]  reddy T, Linden d. Linden’s handbook of batteries; 2010.
               [10]  Succar S: Compressed air energy storage. In Barnes FS, Levine JG, editors: Large energy storage sys-
                 tems handbook, Boca raton, FL, 2011, CrC Press, pp 111–153, chapter 5.
               [11]  Sandia national Laboratory. American recovery and reinvestment Act: energy storage demonstra-
                 tions. Technical report. Sandia national Laboratory energy Storage Systems; 2011.
               [12]  rWe. Adele—adiabatic compressed air energy storage for electricity supply. Technical report. essen/
                 Köln: rWe Power AG; 2010.
               [13]  eIA. electric power monthly April 2012. Technical report April. uS energy Information Adminsitra-
                 tion; 2012.
               [14]  denholm P, Kulcinski GL: Life cycle energy requirements and greenhouse gas emissions from large
                 scale energy storage systems, Energy Convers Manag 45:2153–2172, 2004.
               [15]  rydh C, Sandén B: energy analysis of batteries in photovoltaic systems. Part I: performance and
                 energy requirements, Energy Convers Manag 46:1957–1979, 2005.
               [16]  Sullivan JL, Gaines L. A review of battery life-cycle analysis: state of knowledge and critical needs
                 AnL/eSd/10-7. Technical report. Oak ridge, Tn: Argonne national Laboratory; 2010.
               [17]  Barnhart CJ, Benson S: On the importance of reducing the energetic and material demands of elec-
                 trical energy storage, Energy Environ Sci 6:1083–1092, 2013.
               [18]  Semadeni m: Storage of energy, overview, Encycl Energy 5:719–738, 2004.
               [19]  Wiser r, Bolinger m. 2011 wind technologies market report. Technical report August. uS depart-
                 ment of energy; 2012.
               [20]  Lannoye  e, Flynn  d, O’malley  m:  evaluation of power system flexibility,  IEEE Trans Power Syst
                 27:922–931, 2012.
               [21]  Budischak C, Sewell d, Thomson H, mach L, Veron de, Kempton W: Cost-minimized combinations
                 of wind power, solar power and electrochemical storage, powering the grid up to 99.9% of the time, J
                 Power Sources 225:60–74, 2013.
               [22]  Armand m, Tarascon Jm: Building better batteries, Nature 451:652–657, 2008.
               [23]  Barnhart CJ, dale m, Brandt Ar, Benson Sm: The energetic implications of curtailing versus storing
                 solar- and wind-generated electricity, Energy Environ Sci, 2013.
               [24]  eGrId. eGrId 2013 data; 2014.
               [25]  dolan SL, Heath GA: Life cycle greenhouse gas emissions of utility-scale wind power systematic
                 review and harmonization, J Ind Ecol 16:S136–S154, 2012.
               [26]  Hsu dd, donoughue PO, Fthenakis V, Heath GA, Kim HC, Sawyer P, et al: Life cycle greenhouse gas
                 emissions of crystalline silicon photovoltaic electricity generation, J Ind Ecol 16(s1): 122–135, 2012.
               [27]  O’donoughue Pr, Heath GA, dolan SL, Vorum m: Life cycle greenhouse gas emissions of electricity
                 generated from conventionally systematic review and harmonization, J Ind Ecol 18:125–144, 2014.
               [28]  Carbajales-dale m, Barnhart CJ, Brandt Ar, Benson Sm: A better currency for investing in a sustain-
                 able future, Nat Clim Chang 4:524–527, 2014.
   350   351   352   353   354   355   356   357   358   359   360