Page 178 - Advanced Organic Chemistry Part A - Structure and Mechanisms, 5th ed (2007) - Carey _ Sundberg
P. 178

158                          Table 2.2. Conformational Free Energies  − G   for Some
                                                                        c
                                                  Substituent Groups a
     CHAPTER 2
                                   Substituent  − G c       Substituent     − G c
     Stereochemistry,
     Conformation,                F              0	26 b                    2	9 e
     and Stereoselectivity                               C 6 H 5
                                  Cl             0	53 b  CN                0	2 b
                                  I              0	47 b  CH 3 CO 2         0	71 b
                                                 1	8 c   HO 2 C            1	35 d
                                  CH 3
                                                 1	8 c   C 2 H 5 O 2 C     1	1–1	2 d
                                  CH 3 CH 2
                                   CH 3   2 CH   2	1 c   HO (aprotic solvent)  0	52 d
                                   CH 3   3 C  >4	7 d    HO (protic solvent)  0	87 d
                                  CH 2 = CH      1	7 e   CH 3 O            0	60 d
                                  HC ≡ C         0	5 f   O 2 N             1	16 b
                                  a. For a more extensive compilation see E. L. Eliel, S. H . Wilen, and L. N. Mander
                                   Stereochemistry of Organic Compounds, Wiley, New York, 1993, pp. 696–697.
                                  b. F. R. Jensen and C. H. Bushweller, Adv. Alicyclic Chem., 3, 140 (1971).
                                  c. N. L. Allinger and L. A. Freiburg, J. Org. Chem., 31, 804 (1966).
                                  d. J. A. Hirsch, Top. Stereochem., 1, 199 (1967).
                                  e. E. L. Eliel and M. Manoharan, J. Org. Chem., 46, 1959 (1981).

                       mechanics. 57  Experimental attempts to measure the − G value for t-butyl have
                                                                        c
                       provided only a lower limit, because very little of the axial conformation is present
                       and the energy difference is similar to that between the chair and twist forms of the
                       cyclohexane ring.
                           The strong preference for a t-butyl group to occupy the equatorial position makes
                       it a useful group for the study of conformationally biased systems.A t-butyl substituent
                       ensures that the conformational equilibrium lies heavily to the side having the t-butyl
                       group equatorial but does not stop the process of conformational inversion. It should be
                       emphasized that “conformationally biased” is not synonymous with “conformationally
                       locked.” Because ring inversion can still occur, it is incorrect to think of the systems
                       being “locked” in a single conformation.
                           When two or more substituents are present on a cyclohexane ring, the interactions
                       between the substituents must be included in the analysis. The dimethylcyclohexanes
                       provide a case in which a straightforward interpretation is in good agreement with the
                       experimental data. The  G of the equilibrium for the cis   trans isomerization is
                       given for 1,2-, 1,3-, and 1,4-dimethylcyclohexane. 49
                                                                   CH
                                 CH 3                                 3
                                                                                       CH 3
                                                     CH 3
                                  CH 3              CH 3    H C               H C
                                                              3
                                                                               3
                             cis               trans           trans              cis
                                  ΔG = –1.87 kcal/mol            ΔG = –1.96 kcal/mol
                                   CH 3
                                                H C         CH 3
                         H C                     3
                          3
                              cis                    trans
                                  ΔG = –1.90 kcal/mol

                        57	  N. L. Allinger, J. A. Hirsch, M. A. Miller, I. J. Tyminski, and F. A. VanCatledge, J. Am. Chem. Soc.,
                          90, 1199 (1968); B. van de Graf, J. M. A. Baas, and B. M. Wepster, Recl. Trav. Chim. Pays-Bas, 97,
                          268 (1978); J. M. A. Baas, A. van Veen, and B. M. Wepster, Recl. Trav. Chim. Pays-Bas, 99, 228
                          (1980); S. Antunez and E. Juaristi, J. Org. Chem., 61, 6465 (1996).
   173   174   175   176   177   178   179   180   181   182   183