Page 183 - Advanced Organic Chemistry Part A - Structure and Mechanisms, 5th ed (2007) - Carey _ Sundberg
P. 183

displaced from the plane of the other four. In the half-chair conformation, three carbons  163
          are coplanar, with one of the remaining two being above the plane and the other below.
          The planar portions of both conformations have torsional strain owing to C−H and  SECTION 2.2
          C−C bond eclipsing. The energy differences between the conformers are small and  Conformation
          there is rapid interconversion of conformers. 74  All of the carbon atoms move rapidly
          through planar and nonplanar positions, owing to a process called pseudorotation.








                                    envelope    half-chair



              As ring size increases, there are progressively more conformations that have
          to be considered. For cycloheptane, four conformations have been calculated to be
          particularly stable. 75  NMR investigations indicate that the twist-chair is the most
                76
                                                                  77
          stable. Various derivatives adopt mainly twist-chair conformations. The individual
          twist-chair conformations interconvert rapidly by pseudorotation. 78  The most recent
          MM4 and CCSD/6-311++G    ∗∗  computations (see Section 2.3) indicate the following
          relative energies. 79  Figure 2.17 shows the conformations.






                             chair    boat   twist-chair  twist-boat







                                        MM4      CCSD/6-311++G  ∗∗
                           Twist-chair   0             0
                           Chair         1.4           0.9
                           Boat          3.8           3.3
                           Twist-boat    3.5           3.3

                           Relative energy in kcal/mol




           74
             W. J. Adams, H. J. Geise, and L. S. Bartell, J. Am. Chem. Soc., 92, 5013 (1970); J. B. Lambert,
             J. J. Papay, S. A. Khan, K. A. Kappauf, and E. S. Magyar, J. Am. Chem. Soc., 96, 6112 (1974).
           75	  J. B. Hendrickson, J. Am. Chem. Soc., 89, 7036 (1967); D. F. Bocian and H. L. Strauss, J. Am. Chem.
             Soc., 99, 2866 (1977); P. M Iavanov and E. Osawa, J. Comput. Chem., 5, 307 (1984).
           76	  J. B. Hendrickson, R. K. Boeckman, Jr., J. D. Glickson, and E. Grunwald, J. Am. Chem. Soc., 95, 494
             (1973).
           77
             F. H. Allen, J. A. K. Howard, and N. A. Pitchard, Acta Crystallog., B49, 910 (1993).
           78	  D. F. Bocian, H. M. Pickett, T. C. Rounds, and H. L. Strauss, J. Am. Chem. Soc., 97, 687 (1975).
           79
             K. B. Wiberg, J. Org. Chem., 68, 9322 (2003).
   178   179   180   181   182   183   184   185   186   187   188