Page 330 - Advanced Organic Chemistry Part A - Structure and Mechanisms, 5th ed (2007) - Carey _ Sundberg
P. 330

There is also a good deal of information available on carbanion stability in    311
          solution. 84  These data are derived from equilibrium measurements analogous to acid
          dissociation constants, in which the extent of deprotonation of hydrocarbons by strong  SECTION 3.4
          base is determined:                                                        Electronic Substituent
                                                                                       Effects on Reaction
                           X – CH  – H  +  B –      X – CH 2 –    +  BH                   Intermediates
                                2
          Only a few hydrocarbon derivatives can be directly measured in aqueous solution, but
          extensive studies have been done in other solvents, in particular DMSO. We consider
          this solution data in Chapter 6.
          3.4.3. Radical Intermediates

              Carbon radicals have an unpaired electron in a nonbonding orbital. The possible
          hybridization schemes are shown below.

                   •           •                     R
                           R           R       •            •
               R  C            C  R       C  C         C  C  R    R  C  C  •
                     R      R                       R
                R                      R       R
                   3
                                           2
                sp  / sp  3  p / sp  2   sp  / sp  2   p / sp        sp / sp
          The methyl radical is close to planarity. 85  Experimental 86  and computational 87  results
          indicate that simple alkyl radicals are shallow pyramids with low barriers for inversion,
                                    2
          which is consistent with p/sp hybridization. The ethenyl radical is bent with a
                                   	 88
          C−C−H bond angle of 137 .    High-level MO calculations arrive at a similar
                                              2
                                          2
          structure. 89  This geometry indicates sp /sp hybridization. The alkenyl radicals can
                                                                  90
          readily invert through the linear p/sp radical as a transition structure. A major struc-
          tural effect in alkyl (beyond methyl) and alkenyl radicals is a marked weakening of
          the  -C−H bonds, which occurs by interaction of the  -C−H and the SOMO (singly
          occupied molecular orbital). According to both computational (CBS-4) and thermody-
                                                                   91
          namic cycles, the strength of the  -C−H bond is only 30–35 kcal/mol. This leads to
          one of the characteristic bimolecular reactions of alkyl radicals—disproportionation to
          an alkane and an alkene. Similar values pertain to  -C−H bonds in vinyl radicals.
                     •         HC  CH •             RCH  CH •       RCH   CH 2
               CH 2 CH 2                                    2
             H                H    35.6 kcal/mol     H
                   35.2 kcal / mol                   •CH            CH 3  CH R
                                                             2
                                                        2  CH R            2
                                                        disproportionation
           84
             E. Buncel and J. M. Dust, Carbanion Chemistry, Oxford University Press, Oxford, 2003.
           85   M. Karplus and G. K. Fraenkel, J. Chem. Phys., 35, 1312 (1961); L. Andrews and G. C. Pimentel, J.
             Chem. Phys., 47, 3637 (1967); E. Hirota, J. Phys. Chem., 87, 3375 (1983).
           86   M. Karplus and G. K. Fraenkel, J. Chem. Phys., 35, 1312 (1961); L. Andrews and G. C. Pimental, J.
             Chem. Phys., 47, 3637 (1967); E. Hirota, J. Phys. Chem., 87, 3375 (1983); T. J. Sears, P. M. Johnson,
             P. Jin, and S. Oatis, J. Phys. Chem., 104, 781 (1996).
           87
             F. M. Bickelhaupt, T. Ziegler, and P. v. R. Schleyer, Organometallics, 15, 1477 (1996); M. N. Paddon-
             Row and K. N. Houk, J. Phys. Chem., 89, 3771 (1985); J. Pacansky, W. Koch, and M. D. Miller, J.
             Am. Chem. Soc., 113, 317 (1991); H. H. Suter and T. K. Ha, Chem. Phys., 154, 227 (1991); A. L. L.
             East and P. R. Bunker, Chem. Phys. Lett., 282, 49 (1998).
           88   J. H. Wang, H. -C. Chang, and Y. -T. Chen, Chem. Phys., 206,43 (1996).
           89
             L. A. Curtiss and J. A. Pople, J. Chem. Phys., 88, 7405 (1988); K. A. Peterson and T. H. Dunning, J.
             Chem. Phys., 106, 4119 (1997).
           90   P. R. Jenkins, M. C. R. Symons, S. E. Booth, and C. J. Swain, Tetrahedron Lett., 33, 3543 (1992).
           91
             X. -M. Zhang, J. Org. Chem., 63, 1872 (1998).
   325   326   327   328   329   330   331   332   333   334   335