Page 107 - Advanced Organic Chemistry Part B - Reactions & Synthesis
P. 107

control the stereoselectivity of enolate formation from esters. For simple esters such  79
              as ethyl propanoate, the E-enolate is preferred under kinetic conditions using a strong
              base such as LDA in THF solution. Inclusion of a strong cation-solvating cosolvent,  SECTION 2.1
              such as HMPA or DMPU, favors the Z-enolate. 36  These enolates can be trapped and  Aldol Addition and
                                                                                       Condensation Reactions
              analyzed as the corresponding silyl ketene acetals. The relationships are similar to
              those discussed for formation of ketone enolates in Section 1.1.2.

                                 LDA    TMSCl    H    OSi(CH )
                                                           3 3
                   CH CH CO C H                                E-silyl ketene acetal
                      3
                         2
                            2 2 5
                                 THF                  OC H
                                               CH 3     2 5
                                                  CH
                                  LDA     TMSCl     3    OSi(CH )
                                                              3 3
                 CH CH CO C H                                     Z-silyl ketene acetal
                         2 2 5
                   3
                      2
                               THF, HMPA                 OC H
                                                    H       2 5
              These observations are explained in terms of a chairlike TS for the LDA/THF condi-
              tions and a more open TS in the presence of an aprotic dipolar solvent.
                      O    OR′
                                       – O         R     H                –
                    Li   R                 OR′                            O
                R N                  H            O       OR′           R     OR′
                 2
                      H
                                         R                                  H
                                      E-enolate            –
                                                      H   :B             Z-enolate
                  Despite the ability to control ester enolate geometry, the aldol addition reactions
              of unhindered ester enolate are not very stereoselective. 37
                                                     OH                OH
                          O
                             CH 3   1) LDA     RO C          +   RO C
                                                 2
                                                                   2
                       RO          2) R′CH=O           R′                R′
                                                   CH 3              CH 3
                                                R         R′        syn:anti
                                                CH 3      (CH ) CH   45:55
                                                            3 2
                                                          Ph         45:55
                                                CH 3
                                                (CH ) C   Ph         49:51
                                                   3 3

              This stereoselectivity can be improved by use of a very bulky group. 2,6-
              Dimethylphenyl esters give E-enolates and anti aldol adducts. 38


              36
                 R. E. Ireland and A. K. Willard, Tetrahedron Lett., 3975 (1975); R. E. Ireland, R. H. Mueller, and
                 A. K. Willard, J. Am. Chem. Soc., 98, 2868 (1976); R. E. Ireland, P. Wipf, and J. D. Armstrong, III,
                 J. Org. Chem., 56, 650 (1991).
              37   A. I. Meyers and P. J. Reider, J. Am. Chem. Soc., 101, 2501 (1979); C. H. Heathcock, C. T. Buse,
                 W. A. Kleschick, M. C. Pirrung, J. E. Sohn, and J. Lampe, J. Org. Chem., 45, 1066 (1980).
              38
                 M. C. Pirrung and C. H. Heathcock, J. Org. Chem., 45, 1728 (1980).
   102   103   104   105   106   107   108   109   110   111   112