Page 1107 - Advanced Organic Chemistry Part B - Reactions & Synthesis
P. 1107

E                                            1083
                              O            RO     O     E       R
                             R                         O              CH 2 OH               SECTION 12.2
                                   CH OH      Ti E   Ti
                                     2
                                           O
                                                 O                                      Addition of Oxygen at
                                                       OR                              Carbon-Carbon Double
                                           E                                                     Bonds
                                                                   O      R
                                                                E
                                 O      R               RO     O     E
                              E     O                               O
                                                           Ti E   Ti
                      RO           E                    O     O
                             O    O                              O  OR
                         Ti E   Ti                      E
                      O                                         R
                            O  O   OR
                      E                                             ) CO H
                             ) C
                          (CH 3 3             E   E              (CH 3 3  2
                                                O
                                     RO     O         R
                                         Ti E  Ti  O
                                      O     O     O
                                     E          O
                                           (CH ) C
                                              3 3
              This method has proven to be an extremely useful means of synthesizing enantiomeri-
              cally enriched compounds. Various improvements in the methods for carrying out the
              Sharpless oxidation have been developed. 56  The reaction can be done with catalytic
              amounts of titanium isopropoxide and the tartrate ligand. 57  This procedure uses
              molecular sieves to sequester water, which has a deleterious effect on both the rate
              and enantioselectivity of the reaction.
                  The orientation of the reactants is governed by the chirality of the tartrate ligand.
              In the TS an oxygen atom from the peroxide is transferred to the double bond. The
              enantioselectivity is consistent with a TS such as that shown below. 58

                                                   R 3
                                                      R 2
                                           OR    E O  E
                                        RO
                                               O     O    R
                                         O  Ti  E  Ti
                                               O     O
                                           O      O
                                      RO    (CH ) C
                                               3 3
                                                 ∗
                  There has been a DFT (BLYP/6-31G ) study of the TS and its relationship to
              the enantioselectivity of the reaction. 59  The strategy used was to build up the model
              by successively adding components. First the titanium coordination sphere, including
              an alkene and peroxide group, was modeled (Figure 12.4a). In Figure 12.4b, the diol

              56
                 J. G. Hill, B. E. Rossiter, and K. B. Sharpless, J. Org. Chem., 48, 3607 (1983); L. A. Reed, III,
                 S. Masamune, and K. B. Sharpless, J. Am. Chem. Soc., 104, 6468 (1982).
              57
                 R. M. Hanson and K. B. Sharpless, J. Org. Chem., 51, 1922 (1986); Y. Gao, R. M. Hanson, J. M. Klunder,
                 S. Y. Ko, H. Masamune, and K. B. Sharpless, J. Am. Chem. Soc., 109, 5765 (1987).
              58   V. S. Martin, S. S. Woodard, T. Katsuki, Y. Yamada, M. Ikeda, and K. B. Sharpless, J. Am. Chem.
                 Soc., 103, 6237 (1981); K. B. Sharpless, S. S. Woodard, and M. G. Finn, Pure Appl. Chem., 55, 1823
                 (1983); M. G. Finn and K. B. Sharpless, in Asymmetric Synthesis, Vol. 5, J. D. Morrison, ed., Academic
                 Press, New York, 1985, Chap 8; M. G. Finn and K. B. Sharpless, J. Am. Chem. Soc., 113, 113 (1991);
                 B. H. McKee, T. H. Kalantar, and K. B. Sharpless, J. Org. Chem., 56, 6966 (1991); For an alternative
                 description of the origin of enantioselectivity, see E. J. Corey, J. Org. Chem., 55, 1693 (1990).
              59
                 Y.-D. Wu and D. F. W. Lai, J. Am. Chem. Soc., 117, 11327 (1995).
   1102   1103   1104   1105   1106   1107   1108   1109   1110   1111   1112