Page 443 - Advanced Organic Chemistry Part B - Reactions & Synthesis
P. 443

416              chloroborane 145  achieve high enantioselectivity for aryl and branched dialkyl ketones.
                       Di-(iso-2-ethylapopinocampheyl)chloroborane, 146   Eap  BCl, shows good enantio-
                                                                     2
      CHAPTER 5
                       selectivity for a wider range of alcohols.
      Reduction of
      Carbon-Carbon Multiple                              C(CH )   CH CH
      Bonds, Carbonyl                                         3 3    3  2
      Groups, and Other                                   B
      Functional Groups              (        ) BCl          Cl   (       ) BCl
                                                                           2
                                              2
                                       (Ipc) BCl    t - BuIpcBCl   (Eap) 2 BCl
                                          2
                       For example, (Ipc) BCl was found to be an advantageous in the enantioselective
                                       2
                       reduction in the large-scale preparation of L-699,392, a specific leukotriene antagonist
                       of interest in the treatment of asthma. 147
                                           O      CO 2 CH 3                     OH    CO 2 CH 3
                                                      (Ipc) 2 BCl
                        Cl      N                            Cl     N
                                                                                 87% yield
                                                                                 99.5% e.e. on
                                                                                 2.75 kg scale
                       These reagents react through cyclic TSs and regenerate an alkene.
                                        Cl   R
                                           B                          OBClR     OH
                                             O
                                CH 3      H   C  R′   CH 3        +   C         C
                                         CH  R                     H   R′ R  H     R
                                    CH 3   3              CH 3  CH 3             R′
                       Table 5.5 gives some typical results for enantioselective reduction of ketones by
                       alkylborohydrides and chloroboranes.

                       5.3.3.2. Catalytic Enantioselective Reduction of Ketones. An even more efficient
                       approach to enantioselective reduction is to use a chiral catalyst. One of the most
                       developed is the oxazaborolidine 18, which is derived from the amino acid proline. 148
                       The enantiomer is also available. These catalysts are called the CBS-oxazaborolidines.

                                                 Ph                   Ph
                                            N       +  BH 3     N +
                                                  Ph       H B –       Ph
                                             B–O             3    B–O
                                           CH 3                CH 3
                                               18
                       A catalytic amount (5–20 mol %) of the reagent, along with BH as the reductant,
                                                                             3
                       can reduce ketones such as acetophenone and pinacolone in more than 95% e.e. An
                       adduct of borane and 18 is the active reductant. This adduct can be prepared, stored,

                       145
                          H. C. Brown, M. Srebnik, and P. V. Ramachandran, J. Org. Chem., 54, 1577 (1989).
                       146
                          H. C. Brown, P. V. Ramachandran, A. V. Teodorovic, and S. Swaminathan, Tetrahedron Lett., 32, 6691
                          (1991).
                       147   A. O. King, E. G. Corley, R. K. Anderson, R. D. Larsen, T. R. Verhoeven, P. J. Reider, Y. B. Xiang,
                          M. Belley, Y. Leblanc, M. Labelle, P. Prasit, and R. J. Zamboni, J. Org. Chem., 58, 3731 (1993).
                       148
                          E. J. Corey, R. K. Bakhi, S. Shibata, C. P. Chen, and V. K. Singh, J. Am. Chem. Soc., 109, 7925
                          (1987); E. J. Corey and C. J. Helal, Angew. Chem. Int. Ed. Engl., 37, 1987 (1998); V. A. Glushkov and
                          A. G. Tolstikov, Russ. Chem. Rev., 73, 581 (2004).
   438   439   440   441   442   443   444   445   446   447   448