Page 587 - Advanced Organic Chemistry Part B - Reactions & Synthesis
P. 587

acetals gives  ,
-unsaturated amides (Section 6.4.2.4). In all cases, the reactions occur  561
              with 1,3-transposition of the allylic group.
                                                                                            SECTION 6.4
                     O   R′                              O   R′                           [3,3]-Sigmatropic
                XO                XO    O   R′     R N               R 2 N  O  R′
                                                     2
                                                                                           Rearrangements
                  R                 R                R                 R
                     R′′                R′′              R′′               R′′
                        X = alkyl, silyl

              6.4.2.1. Claisen Rearrangements of Allyl Vinyl Ethers. The [3,3]-sigmatropic
              rearrangement of allyl vinyl ethers leads to  ,
-enones and is known as the Claisen
              rearrangement. 219  The reaction is mechanistically analogous to the Cope rearrangement

              and occurs at temperatures above 150 C. As the product is a carbonyl compound, the
              equilibrium is usually favorable. The reaction introduces an  -acyl alkyl group at the
               -carbon of the allylic alcohol, with 1,3-transposition of the allylic double bond.
                                                                         R
                                                 R      O                     CH 2
               R      OH    +  ZOCH = CHR′                    R′
                                                                        R′  CH   O
              The reactants can be made from allylic alcohols by mercuric ion-catalyzed exchange
              with ethyl vinyl ether. 220  The allyl vinyl ether need not be isolated and is often
              prepared under conditions that lead to its rearrangement. The simplest of all Claisen
              rearrangements, the conversion of allyl vinyl ether to 4-pentenal, typifies this process.

                                                                              O
                CH 2  CHCH OH
                          2
                       +        Hg(OAc) 2  [CH 2  CHCH OCH  CH ]  CH 2  CHCH 2 CH 2 CH
                                                   2
                                                            2
                                   Δ
                CH 2  CHOCH CH 3                                             96%
                           2
                                                                              Ref. 221
                  Acid-catalyzed exchange can also be used to prepare the vinyl ethers.
                                                    H +
                      RCH  CHCH OH  +  CH CH OCH  CH 2  RCH  CHCH OCH   CH 2
                                                                  2
                                       3
                                          2
                                2
                                                                              Ref. 222
              Vinyl ethers can also be generated by thermal elimination reactions. For example,
              base-catalyzed conjugate addition of allyl alcohols to phenyl vinyl sulfone generates 2-

              (phenylsulfinyl)ethyl ethers that can undergo elimination at 200 C. 223  The sigmatropic
              219
                 F. E. Ziegler, Chem. Rev., 88, 1423 (1988); A. M. M. Castro, Chem. Rev., 104, 2939 (2004).
              220   W. H. Watanabe and L. E. Conlon, J. Am. Chem. Soc., 79, 2828 (1957); D. B. Tulshian, R. Tsang, and
                 B. Fraser-Reid, J. Org. Chem., 49, 2347 (1984).
              221
                S. E. Wilson, Tetrahedron Lett., 4651 (1975).
              222   G. Saucy and R. Marbet, Helv. Chim. Acta, 50, 2091 (1967); R. Marbet and G. Saucy, Helv. Chim.
                 Acta, 50, 2095 (1967).
              223
                 T. Mandai, S. Matsumoto, M. Kohama, M. Kawada, J. Tsuji, S. Saito, and T. Moriwake, J. Org. Chem.,
                 55, 5671 (1990); T. Mandai, M. Ueda, S. Hagesawa, M. Kawada, J. Tsuji, and S. Saito, Tetrahedron
                 Lett., 31, 4041 (1990).
   582   583   584   585   586   587   588   589   590   591   592