Page 601 - Advanced Organic Chemistry Part B - Reactions & Synthesis
        P. 601
     Scheme 6.16. (Continued)                                  575
                   10 i         O                                                           SECTION 6.4
                                                          OCH 3
                          OCH 3  O                                                        [3,3]-Sigmatropic
                                     1) LDA  –78°C  r.t.  CH 3   CO 2 H                    Rearrangements
                     CH 3
                                   2) TBDMSCl,
                                     DMPU          TBDMSO             68%
                   TBDMSO     CH 3                         CH 3 CH 3 CH 3
                           CH 3
                   11 j
                          CH 3
                       CH 3  CH 3
                                                      CH 3
                                CH 2                        CH 3  CH 3 CH 2
                                         1)TMS-Cl        CH 3
                                    CH 3
                    CH 2                 LDA, – 78°C                 CH 3
                                        2) then 60°C  CH 3 O 2 C
                     O  O   O  OTBDMS                         O
                                         3)  CH 2 N 2            OTBDMS
                                                                      79 – 83% yield
                   12 k  CH 3                                         96:4 dr at C(2)
                                                      PMBO  CO 2 H
                                CH 3       1) KHMDS             CH 3
                                      O            CH 2
                                            –78°C                   O
                    TBDPSO
                                      O    2) TMS-Cl                O
                           O  O
                                            25°C
                                                               OTBDPS
                                                                       >70%
                     CH 2
                               OPMB
                   13 l
                                                        O       OCH 3
                         O                          C 2 H 5
                     C 2 H 5           1) LHMDS, –100°C
                                        2) TMS-Cl, Et 3 N
                     C 2 H 5     CH 3               C 2 H 5  O    CO 2 H
                         O
                                          3) 25°C
                           H                              H
                             O                                 CH 3
                                 OCH 3
                              O    O
                   14 m               OCH 2 Ph              PhCH 2 O  CO 2 CH 3
                            OCH 2 Ph  O    1)  LHMDS, TMS-Cl  PhCH 2 O
                                             Et 3 N, –78°C
                   TBDPSO             CH 2    2) 25°C  TBDPSO     H      CH 2
                                              3)  CH 3 I             CH 3
                                 CH 3                                    89%
                                                                OCH 3
                             OCH 3
                   15 n  m-MPMO                      m -MPMO
                                 OTBDMS  1) LHMDS             OTBDMS
                                        TMS-Cl, Et 3 N  H
                                                 p -MPMO
                                         2) 120°C
                                 O
                              O                         CO 2 TMS
                       p -MPMO     O
                   a. R. E. Ireland, R. H. Mueller, and A. K. Willard, J. Am. Chem. Soc., 98, 2868 (1976).
                  b. J. A. Katzenellenbogen and K. J. Cristy, J. Org. Chem., 39, 3315 (1974).
                   c. R. E. Ireland and D. W. Norbeck, J. Am. Chem. Soc., 107, 3279 (1985).
                  d. L. M. Pratt, S. A. Bowler, S. F. Courney, C. Hidden, C. N. Lewis, F. M. Martin, and R. S. Todd, Synlett,
                    531 (1998).
                   e. E. J. Corey, B. E. Roberts, and B. R. Dixon, J. Am. Chem. Soc., 117, 193 (1995).
                   f. T. Yamazaki, N. Shinohara, T. Katzume, and S. Sato, J. Org. Chem., 60, 8140 (1995).
                  g. J. M. Percy, M.E. Prime, and M J. Broadhurst, J. Org. Chem., 63, 8049 (1998).
                  h. A. Kazmaier and A. Krebs, Tetrahedron Lett., 40, 479 (1999).
                   i. P. R. Blakemore, P. J. Kocienski, A. Morley, and K. Muir, J. Chem. Soc., Perkin Trans. 1, 955 (1999).
                   j. I. Paterson and A. N. Hulme, J. Org. Chem., 60, 3288 (1995).
                  k. O. Bedell, A. Haudrecky, and Y. Langlois, Eur. J. Org. Chem., 3813 (2004).
                   l. S. D. Burke, J. Hong, J. R. Lennox, and A. P. Mongin, J. Org. Chem., 63, 6952 (1998).
                  m. D. Kim, S. K. Ahn, H. Bae, W. J. Choi, and H. S. Kim, Tetrahedron Lett., 38, 4437 (1997).
                  n. S. D. Burke, J. J. Letourneau, and M. Matulenko, Tetrahedron Lett., 40, 9 (1999).
                  Entry 6 is an example of application of the chiral diazaborolidine enolate method
              (see p. 572). Entry 7 involves generation of the silyl ketene acetal by silylation after
              conjugate addition of the enolate of 3-methylbutanoyloxazolidinone to allyl 3,3,3-
              trifluoroprop-2-enoate. A palladium catalyst improved the yield in the rearrangement





