Page 621 - Advanced Organic Chemistry Part B - Reactions & Synthesis
P. 621

N N                                                                         595
               C 2 H 5    C 2 H 5                                        NN    CH 3
                                 C 2 H 5  C 2 H 5                  C 2 H 5
                                                  C 2 H 5  CH 3
                                               +
                 CH 3                     CH 3                                 C 2 H 5      SECTION 6.6
                         CH 3      CH 3                               CH 3
                                                    CH 3  C 2 H 5
                                                                                       Unimolecular Thermal
                                          43:2.5 from cis                               Elimination Reactions
                                          3.5:42 from trans
                                         predominant retention
                                                                              Ref. 314
              These results can be interpreted in terms of competition between recombination of
              the diradical intermediate and conformational equilibration, which would destroy the
              stereochemical relationships present in the azo compound. The main synthetic appli-
              cation of azo compound decomposition is in the synthesis of cyclopropanes and other
              strained-ring systems. Some of the required azo compounds can be made by 1 3-dipolar
              cycloadditions of diazo compounds (see Section 6.2).
                  Elimination of nitrogen from D-A adducts of certain heteroaromatic rings has been
              useful in syntheses of substituted aromatic compounds. 315  Pyrazines, triazines, and
              tetrazines react with electron-rich dienophiles in inverse electron demand cycloaddi-
              tions. The adducts then aromatize with loss of nitrogen and a dienophile substituent. 316

                                                  N
                                        Y
                             N   N              N        –N 2   N
                                   +                  Y
                                               N
                             N   X                       –HY    X
                                              X
                  Pyridazine-3,6-dicarboxylate esters react with electron-rich alkenes to give
              adducts that undergo subsequent elimination to give terephthalate derivatives. 317

                        CH
                     CO 2  3            CH O C  OCH 3               CO CH 3
                                          3
                                            2
                                                                      2
                       N         OCH 3       N   N(CH )     –N          N(CH )
                                                                            3 2
                        +  CH 2  C                   3 2      2
                       N         N(CH )      N            –MeOH
                                     3 2
                     CO CH 3                 CO 2 CH 3              CO CH 3
                       2
                                                                      2
              Similar reactions have been developed for 1,2,4-triazines and 1,2,4,5-tetrazines.
                            N                               –N
                               +                N             2
                        N   N      N         N N   N             N
                                                   Ph     –HN          Ph
                          CO CH PhC   CH 2     CO 2 CH 3           COCH 3
                                3
                             2
                                                                              Ref. 318


              314   P. D. Bartlett and N. A. Porter, J. Am. Chem. Soc., 90, 5317 (1968).
              315
                 D. L. Boger, Chem. Rev., 86, 781 (1986).
              316
                 D. L. Boger, J. Heterocycl. Chem., 33, 1519 (1996).
              317   H. Neunhoeffer and G. Werner, Liebigs Ann. Chem., 437, 1955 (1973).
              318
                D. L. Boger and J. S. Panek, J. Am. Chem. Soc., 107, 5745 (1985).
   616   617   618   619   620   621   622   623   624   625   626