Page 763 - Advanced Organic Chemistry Part B - Reactions & Synthesis
P. 763
Scheme 8.12. (Continued) 739
n. J. D. White, P. R. Blakemore, N. J. Green, E. B. Hauser, M. A. Holoboski, L. E. Keown, C. S. N. Kolz, and B. W. SECTION 8.2
Phillips, J. Org. Chem., 67, 7750 (2002).
o. X.-T. Chen, B. Zhou, S. K. Bhattacharya, C. E. Gutteridge, T. R. R. Pettus, and S. Danishefsky, Angew. Chem. Int. Ed. Reactions Involving
Engl., 37, 789 (1999). Organopalladium
p. M. Hirama, K. Fujiwara, K. Shigematu, and Y. Fukazawa, J. Am. Chem. Soc., 111, 4120 (1989). Intermediates
q. F. K. Sheffy, J. P. Godschalx, and J. K. Stille, J. Am. Chem. Soc., 106, 4833 (1984).
r. J. Hibino, S. Matsubara, Y. Morizawa, K. Oshima, and H. Nozaki, Tetrahedron Lett., 25, 2151 (1984).
8.2.3.4. Coupling with Organoboron Reagents. The Suzuki reaction is a palladium-
catalyzed cross-coupling reaction in which the organometallic component is a boron
compound. 212 The organoboron compounds that undergo coupling include boronic
acids, 213 boronate esters, 214 and boranes. 215 The overall mechanism is closely related to
that of the other cross-coupling methods. The aryl halide or triflate reacts with the Pd(0)
catalyst by oxidative addition. The organoboron compound serves as the source of the
Scheme 8.13. Synthesis of Ketones from Acyl Chlorides and Stannanes
O
1 a PhCH PdCl/PPh 3
2
3 3
O 2 N COCl + (CH ) Sn O N C
2
18 h
O 97%
2
2 a PhCH PdCl/PPh 3
COCl + (CH ) SnC CC H
3 3 3 7 CC CC H
23 h 3 7
O 70%
2
3 b PdCl , PPh 3
) C
(CH 3 ) 2 C CHCOCl + (n -Bu) Sn (CH 3 2 CHC
3
85%
O O O
4 c PhCH PdCl/PPh 3
2
2 5
3
4
2 5
CH 3 CNHCH(CH ) COCl + (CH 2 CH) Sn CH CNHCH(CH ) CCH CH 2
CO C H CO C H 70%
2 2 5 2 2 5
3 2
2
5 d O CO 2 C H 5 PhCH 2 Pd(PPh ) Cl O
0.7 mol %
N CCl + (n-Bu) Sn O N C
O 2 3 2 C H
CO CO 2 2 5
O
6 e 80%
Pd(PPh ) Cl , PhCHCPh
2
3 2
PhCHSn(n -Bu) 3 + PhCOCl CuCN
76°C O CCH
O CCH 3 2 3 78%
2
a. J. W. Labadie, D. Tueting, and J. K. Stille, J. Org. Chem., 48, 4634 (1983).
b. W. F. Goure, M. E. Wright, P. D. Davis, S. S. Labadie, and J. K. Stille, J. Am. Chem. Soc., 106, 6417 (1984).
c. D. H. Rich, J. Singh, and J. H. Gardner, J. Org. Chem., 48, 432 (1983).
d. A. F. Renaldo, J. W. Labadie, and J. K. Stille, Org. Synth., 67, 86 (1988).
e. J. Ye, R. K. Bhatt, and J. R. Falck, J. Am. Chem. Soc., 116, 1 (1994).
212 N. Miyaura, T. Yanagi, and A. Suzuki, Synth. Commun., 11, 513 (1981); A. Miyaura and A. Suzuki,
Chem. Rev., 95, 2457 (1995); A. Suzuki, J. Organomet. Chem., 576, 147 (1999).
213
W. R. Roush, K. J. Moriarty, and B. B. Brown, Tetrahedron Lett., 31, 6509 (1990); W. R. Roush, J. S.
Warmus, and A. B. Works, Tetrahedron Lett., 34, 4427 (1993); A. R. de Lera, A. Torrado, B. Iglesias,
and S. Lopez, Tetrahedron Lett., 33, 6205 (1992).
214 T. Oh-e, N. Miyaura, and A. Suzuki, Synlett, 221 (1990); J. Fu, B. Zhao, M. J. Sharp, and V. Sniekus,
J. Org. Chem., 56, 1683 (1991).
215
T. Oh-e, N. Miyauara, and A. Suzuki, J. Org. Chem., 58, 2201 (1993); Y. Kobayashi, T. Shimazaki,
H. Taguchi, and F. Sato, J. Org. Chem., 55, 5324 (1990).

