Page 764 - Advanced Organic Chemistry Part B - Reactions & Synthesis
P. 764

740              second organic group by transmetallation, and the disubstituted Pd(II) intermediate
                       then undergoes reductive elimination. It appears that either the oxidative addition or
      CHAPTER 8                                                                       216
                       the transmetallation can be rate determining, depending on reaction conditions.  With
      Reactions Involving  boronic acids as reactants, base catalysis is normally required and is believed to involve
      Transition Metals
                       the formation of the more reactive boronate anion in the transmetallation step. 217

                                                      II
                                     ArX + Pd 0  Ar–Pd –X
                                              –
                                     Ar′B(OH)  +  OH  [Ar′B(OH) ] –
                                                             3
                                           2
                                             –
                                                                 II
                                                    II
                                     [Ar′B(OH) ] +  Ar–Pd –X  Ar–Pd –Ar′ + B(OH)  + X –
                                                                           3
                                            3
                                     Ar–Pd –Ar′   Ar–Ar′ +   Pd 0
                                         II
                       In some synthetic applications, specific bases such as Cs CO  218  or TlOH 219  have been
                                                                    2   3
                       found preferable to NaOH. Cesium fluoride can play a similar function by forming
                       fluoroborate anions. 220  In addition to aryl halides and triflates, aryldiazonium ions can
                       be the source of the electrophilic component in coupling with arylboronic acids. 221
                       Conditions for effecting Suzuki coupling in the absence of phosphine ligands have
                       been developed. 222  One of the potential advantages of the Suzuki reaction, especially
                       when boronic acids are used, is that the boric acid is a more innocuous by-product
                       than the tin-derived by-products generated in Stille-type couplings.
                           Alkenylboronic acids, alkenyl boronate esters, and alkenylboranes can be coupled
                       with alkenyl halides by palladium catalysts to give dienes. 223



                                      R   H       R′  H   Pd(PPh )  R    H  H
                                                                3 4
                                              +
                                                                    H
                                      H   BX 2    H   Y                 H   R′
                                      X = OH, OR, R
                                      Y = Br. I

                       These reactions proceed with retention of double-bond configuration in both the boron
                       derivative and the alkenyl halide. The oxidative addition by the alkenyl halide, transfer



                       216
                          G. B. Smith, G. C. Dezeny, D. L. Hughes, A. D. King, and T. R. Verhoeven, J. Org. Chem., 59, 8151
                          (1994).
                       217   K. Matos and J. B. Soderquist, J. Org. Chem., 63, 461 (1998).
                       218   A. F. Littke and G. C. Fu, Angew. Chem. Int. Ed. Engl., 37, 3387 (1998).
                       219
                          J. Uenishi, J.-M. Beau, R. W. Armstrong, and Y. Kishi, J. Am. Chem. Soc., 109, 4756 (1987);
                          J. C. Anderson, H. Namli, and C. A. Roberts, Tetrahedron, 53, 15123 (1997).
                       220   S. W. Wright, D. L. Hageman, and L. D. McClure, J. Org. Chem., 59, 6095 (1994).
                       221
                          S. Darses, T. Jeffery, J.-P. Genet, J.-L. Brayer, and J.-P. Demoute, Tetrahedron Lett., 37, 3857 (1996);
                          S. Darses, T. Jeffery, J.-L. Brayer, J.-P. Demoute, and J.-P. Genet, Bull. Soc. Chim. Fr., 133, 1095
                          (1996); S. Sengupta and S. Bhattacharyya, J. Org. Chem., 62, 3405 (1997).
                       222   T. L. Wallow and B. M. Novak, J. Org. Chem., 59, 5034 (1994); D. Badone, M. B. R. Cardamone,
                          A. Ielmini, and U. Guzzi, J. Org. Chem., 62, 7170 (1997).
                       223
                          (a) N. Miyaura, K. Yamada, H. Suginome, and A. Suzuki, J. Am. Chem. Soc., 107, 972 (1985); (b)
                          N. Miyaura, M. Satoh, and A. Suzuki, Tetrahedron Lett., 27, 3745 (1986); (c) F. Bjorkling, T. Norin,
                          C. R. Unelius, and R. B. Miller, J. Org. Chem., 52, 292 (1987).
   759   760   761   762   763   764   765   766   767   768   769