Page 946 - Advanced Organic Chemistry Part B - Reactions & Synthesis
P. 946

922                  (a)                                 (b)

      CHAPTER 10
      Reactions Involving
      Carbocations, Carbenes,
      and Radicals as Reactive
      Intermediates















                        Fig. 10.6. Dimeric (Ar = 2,6-dimethylphenyl) (a) and monomeric (Ar = 2,4,6-trimethylphenyl) (b)
                        copper complexes with diphenylcarbene. Reproduced from J. Am. Chem. Soc., 126, 10085 (2004), by
                        permission of the American Chemical Society.




                           There has also been computational investigation of copper-catalyzed carbenoid
                       addition reactions, as shown in Figure 10.7. 194  These computational studies agree with
                       experimental investigations in identifying nitrogen extrusion as the rate-determining
                       step. The addition step is a direct carbene transfer, as opposed to involving a metallo-
                       cyclobutane intermediate.
                           Various other transition metal complexes are also useful, including rhodium, 195
                       palladium, 196  and molybdenum 197  compounds. The catalytic cycle can generally be
                       represented as shown below. 198

                                              R  R
                                                         L M     R CN 2
                                                                   2
                                                          n

                                                        L M  CR 2  N 2
                                                         n


                       194   J. M. Fraile, J. I. Garcia, V. Martinez-Merino, J. A. Mayoral, and L. Salvatella, J. Am. Chem. Soc.,
                          123, 7616 (2001); T. Rasmussen, J. F. Jensen, N. Ostergaard, D. Tanner, T. Ziegler, and P.-O. Norrby,
                          Chem. Eur. J., 8, 177 (2002).
                       195   S. Bien and Y. Segal, J. Org. Chem., 42, 1685 (1977); A. J. Anciaux, A. J. Hubert, A. F. Noels,
                          N. Petiniot, and P. Teyssie, J. Org. Chem., 45, 695 (1980); M. P. Doyle, W. H. Tamblyn, and V. Baghari,
                          J. Org. Chem., 46, 5094 (1981); D. F. Taber and R. E. Ruckle, Jr., J. Am. Chem. Soc., 108, 7686 (1986).
                       196
                          R. Paulissen, A. J. Hubert, and P. Teyssie, Tetrahedron Lett., 1465 (1972); U. Mende, B. Raduchel,
                          W. Skuballa, and H. Vorbruggen, Tetrahedron Lett., 629 (1975); M. Suda, Synthesis, 714 (1981);
                          M. P. Doyle, L. C. Wang, and K.-L. Loh, Tetrahedron Lett., 25, 4087 (1984); L. Strekowski, M. Visnick,
                          and M. A. Battiste, J. Org. Chem., 51, 4836 (1986).
                       197   M. P. Doyle and J. G. Davidson, J. Org. Chem., 45, 1538 (1980); M. P. Doyle, R. L. Dorow, W. E. Buhro,
                          J. H. Tamblyn, and M. L. Trudell, Organometallics, 3, 44 (1984).
                       198
                          M. P. Doyle, Chem. Rev., 86, 919 (1986).
   941   942   943   944   945   946   947   948   949   950   951