Page 443 - Advanced thermodynamics for engineers
P. 443

18.2 LIQUEFACTION BY EXPANSION – METHOD (II)          433





                                             vT      1     a      v   b  2a
                                   and hence;      ¼    p þ                 ;
                                              vv  p  <     v 2     <     v 3
                                                                                           (18.17)
                                          vv               <
                                   giving      ¼
                                          vT          a            2a
                                              p
                                                  p þ     ðv   bÞ
                                                      v 2          v 3
                  Thus, from Eqn (18.17), the Joule–Thomson coefficient for a van der Waals gas is not zero at all
               points, being given by
                                              2                        3
                                                        <T
                                            1 6                        7
                                        m ¼   6                       v 7                  (18.18)
                                              4     a           2a     5
                                            c p
                                                p þ  2   ðv   bÞ  3
                                                    v           v
               18.2.2 MAXIMUM AND MINIMUM INVERSION TEMPERATURES
               The general form of Van der Waals equation, Eqn (18.15), can be rewritten as

                                                       a   ðv   bÞ

                                              T ¼ p þ            :                         (18.16)
                                                       v 2   <
                  The inversion temperature is defined as
                                                         vT

                                                  T i ¼ v                                  (18.19)
                                                         vv
                                                             p
               which can be evaluated from Eqn (18.16) in the following way.

                                         vT     1      a     v   b   2a
                                              ¼    p þ                  ;
                                         vv     <      v 2     <     v 3
                                             p
                                                                                           (18.20)

                                         vT     1        a            2a
                                 giving v     ¼    v p þ     ðv   bÞ
                                         vv     <        v 2          v 2
                                             p
                  It is now necessary to solve for v in terms of T i alone, and this can be achieved by multiplying
               Eqn (18.16) by v and Eqn (18.20) by (v b). This gives
                                                       a   vðv   bÞ

                                             vT i ¼ p þ  2        ;                        (18.21)
                                                       v      <
                                                                         2
                                                  vðv   bÞ     a     ðv   bÞ 2a
                                   and  ðv   bÞT i ¼       p þ                             (18.22)
                                                     <        v 2     <    v 2
                  Subtracting Eqns (18.21) and (18.22) gives
                                                     r ffiffiffiffiffiffiffiffiffiffi

                                            v   b      <bT i        b
                                                   ¼       ¼ x ¼ 1                         (18.23)
                                              v         2a          v
                  Substituting Eqn (18.23) in Eqn (18.15) gives
   438   439   440   441   442   443   444   445   446   447   448