Page 400 - Advances in Biomechanics and Tissue Regeneration
P. 400

20.3 ALGORITHM DESCRIPTION                                397

           20.3.2 Mechanical Analysis
              For each time instant, t j , a mechanical analysis is performed, considering each load case, k, separately and sequen-
           tially. So, for each load case, k, and integration point, x I , a local stiffness matrix, K I , is constructed using the following
           expression:

                                                     Z
                                                                      T
                                                         T
                                                 K I5   B c I B I dΩ I 5^ w I B c I B I                     (20.1)
                                                         I
                                                                      I
                                                      Ω I
           in which B I is the deformation matrix and c I is the material constitutive matrix, both for integration point, x I . The phys-
           ical volume occupied by integration point, x I , is denoted by Ω I and its numerical representation by ^ w I . By assembling
           all local stiffness matrices, K I , into a single one, the global stiffness matrix, K, is constructed. Then the essential bound-
                                                                                                   k
           ary conditions for each load case, k, are imposed in K. Consequently, knowing K and the force vector, f , for the respec-
                                               k
                                                                                                     k
                                                     k
                                                 k
           tive load case, k, the equation system K u ¼f can be solved, determining the displacement field, u . Then, using
                                                       k
                                     k
           Hooke’s law [13], the strain, ε , and stress fields, σ , are obtained. These two fields allow the calculus of the principal
                            k
           stresses field, σ(x I ) i , with the following:
                                               "               #             !
                                                      k       k
                                                 σ xx x I  ðÞ          k 10
                                                   ðÞ σ xy x I
                                           det        k       k   σ x I i      ¼ 0                          (20.2)
                                                                   ðÞ
                                                   ðÞ σ yy x I
                                                 σ xy x I  ðÞ            01
                                          k
           and principal directions field, n(x I ) i , with
                                         "               #             !(      k  )
                                                k       k
                                             ðÞ σ xy x I
                                          σ xx x I  ðÞ          k 10      n x x I i
                                                                            ðÞ
                                                k       k   σ x I i            k  ¼ 0                       (20.3)
                                                             ðÞ
                                             ðÞ σ yy x I
                                          σ xy x I  ðÞ            01      n y x I i
                                                                            ðÞ
                                                        k
           Moreover the von Mises effective stress field, σ x I , is also determined by the following expression:
                                                     ðÞ
                                      s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
                                        1                 2                2                2


                                   k            k      k         k      k         k       k
                               σ x I        σ x I 1  ðÞ   + σ x I 2  ðÞ    + σ x I 3  ðÞ                    (20.4)
                                                                               ðÞ  σ x I 1
                                                              ðÞ  σ x I 3
                                             ðÞ  σ x I 2
                                ðÞ ¼
                                        2
                                                                            k
                                                                         k
                                                                     k
                                                                  k
                                                                k
           At the end of this analysis, the obtained variable fields, λ¼{u j ,ε j ,σ j ,σ(n) j ,n j }, are weighted at each time instant, t j , and
           load case, k, using the following expression:
                                                                d k λ
                                                           n k    k
                                                           X
                                                                                                            (20.5)
                                                              X
                                                                 n k
                                                        λ ¼
                                                           k¼1     d k
                                                                 k¼1
           So the variable field, λ, is weighted according to the number of load cases, n k , and the corresponding number of load
           cycles, d k , that corresponds to the average number of times a certain load occurs daily.
           20.3.3 Bone Remodeling
              The premise of this algorithm is that bone gradually changes its apparent density during bone remodeling. How-
           ever, to ensure a continuous and progressive process, only a portion of the integration points will undergo remodeling
           and consequently update its apparent density. These remodeling points are chosen according to the used remodeling
           criterion. In this work, principal stress, σ 11 , is the remodeling criterion used to divide the integration points into three
           distinct groups—resorption, formation, and lazy groups. The resorption group, R(x I ), is given by.
                                                                                                            (20.6)
                                           R x I 2 σ 11min ,σ 11min + α 4σ 11 , 8R x I 2 ℝ½½  ðÞ
                                            ðÞ
           and the formation group, F(x I ), by
                                           F x I 2Šσ 11max  β  4σ 11 ,σ 11max Š, 8F x I 2 ℝ                 (20.7)
                                                                          ðÞ
                                            ðÞ
                                          II. MECHANOBIOLOGY AND TISSUE REGENERATION
   395   396   397   398   399   400   401   402   403   404   405