Page 144 - MarceAlgebra Demystified
P. 144

CHAPTER 6 Factoring                                                          131



            Reducing a fraction or adding two fractions sometimes only requires that  1
                                                                           y   x
            be factored from one or more denominators. For instance in           the
                                                                           x   y
            numerator and denominator are only off by a factor of  1. To reduce this
            fraction, factor  1 from the numerator or denominator:
                 y   x    ð y þ xÞ     ðx   yÞ    1
                       ¼            ¼          ¼    ¼ 1or
                 x   y      x   y      x   y      1
                 y   x      y   x      y   x      1
                       ¼            ¼          ¼    ¼ 1:
                 x   y    ð x þ yÞ     ðy   xÞ    1


                         3       x
            In the sum       þ      the denominators are off by a factor of  1. Factor
                       y   x   x   y                                a     a
             1 from one of the denominators and use the fact that      ¼     to write
                                                                    b     b
            both terms with the same denominator.
                    3      x         3         x         3        x
                       þ       ¼           þ       ¼          þ
                  y   x  x   y    ð y þ xÞ    x   y   ðx   yÞ   x   y
                                   3       x      3 þ x
                               ¼       þ      ¼
                                 x   y   x   y   x   y
            In the next examples and practice problems a ‘‘ 1’’ is factored from the
            denominator and moved to the numerator.


                 Examples

                   1         1           1         1         3          3        3
                       ¼            ¼          ¼                  ¼          ¼
                 1   x    ð 1 þ xÞ     ðx   1Þ   x   1      x   6    ðx þ 6Þ   x þ 6

                    3x          3x          ð 3xÞ        3x
                         ¼              ¼           ¼
                 14 þ 9x    ð 14   9xÞ     14   9x     14   9x
                 16x   5     16x   5      16x   5     ð16x   5Þ    16x þ 5
                         ¼             ¼           ¼            ¼
                  7x   3    ð 7x þ 3Þ     ð3   7xÞ     3   7x       3   7x



                 Practice

                       1
                 1:       ¼
                     y   x
   139   140   141   142   143   144   145   146   147   148   149