Page 168 - Applied Numerical Methods Using MATLAB
P. 168

PROBLEMS   157
                2

                1
                                  x (t )
                0
                        : x [n]
                        : x (t )
               –1
                 0      0.5      1       1.5      2      2.5      3 t = nT  3.5
                      (a) A given data sequence x [n] and its interpolation x(t) by using DFS

               15
                                        |X(k)|
               10

                5
                                                                     digital
                                                                    frequency
                0
                 0            8            16(p)        24         31    k
                                (b) The original DFS/DFT spectrum X(k)

               15
                                        |X′(k)|
               10

                5
                             Ws · p                (2 – Ws)p         digital
                                  zero-padding(zero-out)            frequency
                0
                 0            8           16(p)        24          31    k
                             (c) The spectrum X′(k) of the filtered signal x′(t)
                2
                1                x′(t )

                0        : x [n]
                         : x′(t )
               –1
                 0      0.5      1       1.5      2      2.5      3 t = nT  3.5
                                     (d) The filtered signal x′(t)
                         Figure 3.14 Interpolation/smoothing by using DFS/DFT.


            PROBLEMS

             3.1 Quadratic Interpolation: Lagrange Polynomial and Newton Polynomial
                (a) The second-degree Lagrange polynomial matching the three points
                    (x 0 ,f 0 ), (x 1 ,f 1 ),and (x 2 ,f 2 ) can be written by substituting N = 2
   163   164   165   166   167   168   169   170   171   172   173